首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The liver and exocrine pancreas share a common structure, with functioning units (hepatic plates and pancreatic acini) connected to the ductal tree. Here we show that Sox9 is expressed throughout the biliary and pancreatic ductal epithelia, which are connected to the intestinal stem-cell zone. Cre-based lineage tracing showed that adult intestinal cells, hepatocytes and pancreatic acinar cells are supplied physiologically from Sox9-expressing progenitors. Combination of lineage analysis and hepatic injury experiments showed involvement of Sox9-positive precursors in liver regeneration. Embryonic pancreatic Sox9-expressing cells differentiate into all types of mature cells, but their capacity for endocrine differentiation diminishes shortly after birth, when endocrine cells detach from the epithelial lining of the ducts and form the islets of Langerhans. We observed a developmental switch in the hepatic progenitor cell type from Sox9-negative to Sox9-positive progenitors as the biliary tree develops. These results suggest interdependence between the structure and homeostasis of endodermal organs, with Sox9 expression being linked to progenitor status.  相似文献   

2.
Sox9 induces testis development in XX transgenic mice.   总被引:18,自引:0,他引:18  
Mutations in SOX9 are associated with male-to-female sex reversal in humans. To analyze Sox9 function during sex determination, we ectopically expressed this gene in XX gonads. Here, we show that Sox9 is sufficient to induce testis formation in mice, indicating that it can substitute for the sex-determining gene Sry.  相似文献   

3.
Mutations in SUFU predispose to medulloblastoma   总被引:8,自引:0,他引:8  
Enchondromas are common benign cartilage tumors of bone. They can occur as solitary lesions or as multiple lesions in enchondromatosis (Ollier and Maffucci diseases). Clinical problems caused by enchondromas include skeletal deformity and the potential for malignant change to chondrosarcoma. The extent of skeletal involvement is variable in enchondromatosis and may include dysplasia that is not directly attributable to enchondromas. Enchondromatosis is rare, obvious inheritance of the condition is unusual and no candidate loci have been identified. Enchondromas are usually in close proximity to, or in continuity with, growth-plate cartilage. Consequently, they may result from abnormal regulation of proliferation and terminal differentiation of chondrocytes in the adjoining growth plate. In normal growth plates, differentiation of proliferative chondrocytes to post-mitotic hypertrophic chondrocytes is regulated in part by a tightly coupled signaling relay involving parathyroid hormone related protein (PTHrP) and Indian hedgehog (IHH). PTHrP delays the hypertrophic differentiation of proliferating chondrocytes, whereas IHH promotes chondrocyte proliferation. We identified a mutant PTH/PTHrP type I receptor (PTHR1) in human enchondromatosis that signals abnormally in vitro and causes enchondroma-like lesions in transgenic mice. The mutant receptor constitutively activates Hedgehog signaling, and excessive Hedgehog signaling is sufficient to cause formation of enchondroma-like lesions.  相似文献   

4.
Receptor tyrosine kinases often have critical roles in particular cell lineages by initiating signalling cascades in those lineages. Examples include the neural-specific TRK receptors, the VEGF and angiopoietin endothelial-specific receptors, and the muscle-specific MUSK receptor. Many lineage-restricted receptor tyrosine kinases were initially identified as 'orphans' homologous to known receptors, and only subsequently used to identify their unknown growth factors. Some receptor-tyrosine-kinase-like orphans still lack identified ligands as well as biological roles. Here we characterize one such orphan, encoded by Ror2 (ref. 12). We report that disruption of mouse Ror2 leads to profound skeletal abnormalities, with essentially all endochondrally derived bones foreshortened or misshapen, albeit to differing degrees. Further, we find that Ror2 is selectively expressed in the chondrocytes of all developing cartilage anlagen, where it essential during initial growth and patterning, as well as subsequently in the proliferating chondrocytes of mature growth plates, where it is required for normal expansion. Thus, Ror2 encodes a receptor-like tyrosine kinase that is selectively expressed in, and particularly important for, the chondrocyte lineage.  相似文献   

5.
6.
7.
8.
Perlecan is essential for cartilage and cephalic development.   总被引:19,自引:0,他引:19  
Perlecan, a large, multi-domain, heparan sulfate proteoglycan originally identified in basement membrane, interacts with extracellular matrix proteins, growth factors and receptors, and influences cellular signalling. Perlecan is present in a variety of basement membranes and in other extracellular matrix structures. We have disrupted the gene encoding perlecan (Hspg2) in mice. Approximately 40% of Hspg2-/- mice died at embryonic day (E) 10.5 with defective cephalic development. The remaining Hspg2-/- mice died just after birth with skeletal dysplasia characterized by micromelia with broad and bowed long bones, narrow thorax and craniofacial abnormalities. Only 6% of Hspg2-/- mice developed both exencephaly and chondrodysplasia. Hspg2-/- cartilage showed severe disorganization of the columnar structures of chondrocytes and defective endochondral ossification. Hspg2-/- cartilage matrix contained reduced and disorganized collagen fibrils and glycosaminoglycans, suggesting that perlecan has an important role in matrix structure. In Hspg2-/- cartilage, proliferation of chondrocytes was reduced and the prehypertrophic zone was diminished. The abnormal phenotypes of the Hspg2-/- skeleton are similar to those of thanatophoric dysplasia (TD) type I, which is caused by activating mutations in FGFR3 (refs 7, 8, 9), and to those of Fgfr3 gain-of-function mice. Our findings suggest that these molecules affect similar signalling pathways.  相似文献   

9.
In most mammals, male development is triggered by the transient expression of the Y-chromosome gene, Sry, which initiates a cascade of gene interactions ultimately leading to the formation of a testis from the indifferent fetal gonad. Several genes, in particular Sox9, have a crucial role in this pathway. Despite this, the direct downstream targets of Sry and the nature of the pathway itself remain to be clearly established. We report here a new dominant insertional mutation, Odsex (Ods), in which XX mice carrying a 150-kb deletion (approximately 1 Mb upstream of Sox9) develop as sterile XX males lacking Sry. During embryogenesis, wild-type XX fetal gonads downregulate Sox9 expression, whereas XY and XX Ods/+ fetal gonads upregulate and maintain its expression. We propose that Ods has removed a long-range, gonad-specific regulatory element that mediates the repression of Sox9 expression in XX fetal gonads. This repression would normally be antagonized by Sry protein in XY embryos. Our data are consistent with Sox9 being a direct downstream target of Sry and provide genetic evidence to support a general repressor model of sex determination in mammals.  相似文献   

10.
11.
K Sch?fer  T Braun 《Nature genetics》1999,23(2):213-216
During vertebrate embryogenesis, myogenic precursor cells of limb muscles delaminate from the ventro-lateral edge of the somitic dermomyotome and migrate to the limb buds, where they congregate into dorsal and ventral muscle masses. It has been proposed that the surrounding connective tissue controls muscle pattern formation in limbs. Regulatory molecules such as receptor tyrosine kinases like c-Met ( ref. 6) and those encoded by homeobox-containing genes, including c-Met (ref. 6), Tbx1 (ref. 7), Mox2 (ref. 8), Six1 and Six2 (ref. 9), Pitx2, Pax3 (refs 10,11) and Lbx1h (refs 12,13), are expressed in migrating limb precursor cells. The role of these genes in the patterning of limb muscles is unknown, although mutation of Pax3 or Met causes disruption of limb muscle development at an initial step, disturbing the epithelial-to-mesenchymal transition of the somitic epithelium. No limb muscle cells form in these mutants, and the early loss of myogenic precursor cells prevented an analysis of later functions of these genes during limb muscle development. Based on quail-chick chimaera studies, it was assumed that a cell-autonomous contribution of myogenic cells to the formation of individual limb muscles is negligible, and that an instructive role of limb mesenchyme is critical in this process. Here we show that Lbx1h determines migratory routes of muscle precursor cells in a cell-autonomous manner, thereby leading to the formation of distinct limb muscle patterns. Inactivation of Lbx1h, which is specifically expressed in migrating muscle precursor cells, led to a lack of extensor muscles in forelimbs and an absence of muscles in hindlimbs. The defect was caused by the failure of all muscle precursor cells of hindlimbs and of precursor cells of extensor muscles of forelimbs to migrate to their corresponding muscle anlagen. Our results demonstrate that Lbx1h is a key regulator of muscle precursor cell migration and is required for the acquisition of dorsal identities of forelimb muscles.  相似文献   

12.
Elimination of the developing female reproductive tract in male fetuses is an essential step in mammalian sexual differentiation. In males, the fetal testis produces the transforming growth factor beta (TGF-beta) family member anti-Müllerian hormone (Amh, also known as Müllerian-inhibiting substance (Mis)), which causes regression of the Müllerian ducts, the primordia of the oviducts, uterus and upper vagina. Amh induces regression by binding to a specific type II receptor (Amhr2) expressed in the mesenchyme surrounding the ductal epithelium. Mutations in AMH or AMHR2 in humans and mice disrupt signaling, producing male pseudohermaphrodites that possess oviducts and uteri. The type I receptor and Smad proteins that are required in vivo for Müllerian duct regression have not yet been identified. Here we show that targeted disruption of the widely expressed type I bone morphogenetic protein (BMP) receptor Bmpr1a (also known as Alk3) in the mesenchymal cells of the Müllerian ducts leads to retention of oviducts and uteri in males. These results identify Bmpr1a as a type I receptor for Amh-induced regression of Müllerian ducts. Because Bmpr1a is evolutionarily conserved, these findings indicate that a component of the BMP signaling pathway has been co-opted during evolution for male sexual development in amniotes.  相似文献   

13.
Stroke is the world's third leading cause of death. One cause of stroke, intracranial aneurysm, affects approximately 2% of the population and accounts for 500,000 hemorrhagic strokes annually in mid-life (median age 50), most often resulting in death or severe neurological impairment. The pathogenesis of intracranial aneurysm is unknown, and because catastrophic hemorrhage is commonly the first sign of disease, early identification is essential. We carried out a multistage genome-wide association study (GWAS) of Finnish, Dutch and Japanese cohorts including over 2,100 intracranial aneurysm cases and 8,000 controls. Genome-wide genotyping of the European cohorts and replication studies in the Japanese cohort identified common SNPs on chromosomes 2q, 8q and 9p that show significant association with intracranial aneurysm with odds ratios 1.24-1.36. The loci on 2q and 8q are new, whereas the 9p locus was previously found to be associated with arterial diseases, including intracranial aneurysm. Associated SNPs on 8q likely act via SOX17, which is required for formation and maintenance of endothelial cells, suggesting a role in development and repair of the vasculature; CDKN2A at 9p may have a similar role. These findings have implications for the pathophysiology, diagnosis and therapy of intracranial aneurysm.  相似文献   

14.
Lumbar disc disease (LDD) is caused by degeneration of intervertebral discs of the lumbar spine. One of the most common musculoskeletal disorders, LDD has strong genetic determinants. Using a case-control association study, we identified a functional SNP (1184T --> C, resulting in the amino acid substitution I395T) in CILP, which encodes the cartilage intermediate layer protein, that acts as a modulator of LDD susceptibility. CILP was expressed abundantly in intervertebral discs, and its expression increased as disc degeneration progressed. CILP colocalized with TGF-beta1 in clustering chondrocytes and their territorial matrices in intervertebral discs. CILP inhibited TGF-beta1-mediated induction of cartilage matrix genes through direct interaction with TGF-beta1 and inhibition of TGF-beta1 signaling. The susceptibility-associated 1184C allele showed increased binding and inhibition of TGF-beta1. Therefore, we conclude that the extracellular matrix protein CILP regulates TGF-beta signaling and that this regulation has a crucial role in the etiology and pathogenesis of LDD. Our study also adds to the list of connective tissue diseases that are associated with TGF-beta.  相似文献   

15.
16.
17.
18.
19.
Members of the CCN (for CTGF, cyr61/cef10, nov) gene family encode cysteine-rich secreted proteins with roles in cell growth and differentiation. Cell-specific and tissue-specific differences in the expression and function of different CCN family members suggest they have non-redundant roles. Using a positional-candidate approach, we found that mutations in the CCN family member WISP3 are associated with the autosomal recessive skeletal disorder progressive pseudorheumatoid dysplasia (PPD; MIM 208230). PPD is an autosomal recessive disorder that may be initially misdiagnosed as juvenile rheumatoid arthritis. Its population incidence has been estimated at 1 per million in the United Kingdom, but it is likely to be higher in the Middle East and Gulf States. Affected individuals are asymptomatic in early childhood. Signs and symptoms of disease typically develop between three and eight years of age. Clinically and radiographically, patients experience continued cartilage loss and destructive bone changes as they age, in several instances necessitating joint replacement surgery by the third decade of life. Extraskeletal manifestations have not been reported in PPD. Cartilage appears to be the primary affected tissue, and in one patient, a biopsy of the iliac crest revealed abnormal nests of chondrocytes and loss of normal cell columnar organization in growth zones. We have identified nine different WISP3 mutations in unrelated, affected individuals, indicating that the gene is essential for normal post-natal skeletal growth and cartilage homeostasis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号