首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ZK-MEM方程作为一类重要的非线性方程有着许多广泛的应用前景,基于Hamilton空间体系的多辛理论研究了ZK-MEM方程的数值解法,讨论了利用Preissmann方法构造离散多辛格式的途径,并构造了一种典型的半隐式的多辛格式,该格式满足多辛守恒律、局部能量守恒律.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

2.
提出非线性Pochhammer-Chree方程的多辛方程组及其守恒律,并通过辛离散多辛方程组得到一个等价于中心Preissmann积分的新的15点多辛格式.数值试验结果表明:本文所给出的多辛格式是有效的,它具有良好的长时间数值行为.  相似文献   

3.
DGH方程作为一类重要的非线性方程有着许多广泛的应用前景.基于哈密顿系统的多辛理论研究一类DGH方程的数值解法,利用多辛Preissmann方法对此哈密顿系统进行数值离散,构造一种半隐式的多辛格式.数值算例结果表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

4.
高阶KdV类型水波方程作为一类重要的非线性方程有着广泛的应用前景.基于Hamilton空间系的多辛理论研究了一类高阶KdV类型水波方程的数值解法,利用Preissmann方法构造了离散半隐式的多辛格式,该格式满足多辛守恒律.数值算例表明该多辛离散格式具有较好的长时间数值稳定性.  相似文献   

5.
有限区间上多辛Preissmann格式及其附加条件   总被引:1,自引:0,他引:1  
对于有限区间上偏微分方程Hamilton型PDEs的多辛Preissmann格式必须引入附加条件 ,否则对于KdV方程是不能使用的 ,而对于G .B .方程则不能得到正确的结果 .论文分别具体给出了KdV方程和G .B .方程的这种附加条件 .数值实例显示使用附加条件后由该格式得到的数值解表示的孤立子演化过程和其对应理论解表示的该过程是一致的 ,且格式是长时间数值稳定的  相似文献   

6.
吕丽 《科学技术与工程》2011,11(36):8947-8950
通过引入正则变量,把一类非线性耦合KdV方程组转化为多辛方程组,推导出多辛守恒律。再依据多辛方程组构造多辛Preissmann格式,并且用数值试验证明了格式的有效性。  相似文献   

7.
考虑对称正则长波(SRLW)方程的多辛算法.辛算法是从辛几何观点出发.利用变分原理构造的具有保持原Hamilton系统辛几何结构性质的一种算法.本文利用正则变换.构造正则长波方程的多辛方程组,利用多辛算法离散此多辛方程组,得到一个多辛中点格式,要求所得到的多辛格式满足离散形式的多辛守恒律.并分析了它的线性部分的稳定性.用数值实验验征了所构造的格式具有长时间的数值稳定性,它们还能很好地模拟原孤立波的波形。  相似文献   

8.
考虑粱振动方程的一个多辛形式.并利用中点公式得到一个等价于多辛Preissman积分的新格式.用Fourier分析法,证明该格式是无条件稳定的.最后给出数值例子.数值例子表明,文中所给的格式是有效的,且理论分析与实际计算相吻合.  相似文献   

9.
10.
对满足周期边界条件的KdV方程,基于其多辛方程组的形式,空间方向用Fourier谱离散方法,得到了在时间方向具有辛结构的半离散系统及其相应的守恒律;时间方向用中点隐式辛格式进行离散,得到了KdV方程的多辛Fourier谱离散格式.数值实验验证了所构造格式的有效性与长期数值稳定性.  相似文献   

11.
基于Hamilton空间体系下的多辛理论,提出组合KdV-mKdV方程的一个多辛方程组.通过离散此方程组,得到原方程的一个多辛Fourier拟谱格式,以及格式的全离散多辛守恒律.由数值结果可知,多辛Fourier拟谱格式能很好地模拟孤立波运动的波形,不出现振荡现象,且在空间方向具有较高的精度和收敛阶.  相似文献   

12.
通过对SRLW方程作正则变换,得到了它的一个正则方程组.构造了它的多辛Fourier拟谱格式.数值实验表明它具有长时间的数值稳定性,能很好地模拟原孤立波的波形.  相似文献   

13.
对非线性Pochhammer-Chree方程的一个多辛方程组进行数值离散,导出了方程的离散多辛守恒律,并得到一个与此数值离散方法等价的新的9点多辛盒格式.孤立波的数值模拟试验验证了所构造格式的长时间数值稳定性以及非线性Pochhammer-Chree方程的孤立波相互作用是非弹性的事实.  相似文献   

14.
多辛Preissman格式及其应用   总被引:2,自引:2,他引:0  
主要讨论了用于求解多辛哈密尔顿系统的多辛Preissman格式及其简单应用.根据多辛格式必须满足离散的多辛守恒律的基本思想,从Runge-Kutta方法入手,推导出其为多辛格式的充分条件,进而得到了多辛的中点格式,同时举例说明的它在偏微分方程数值求解中的应用.  相似文献   

15.
在空间方向用Fourier拟谱方法离散非线性“good”Boussinesq方程,然后在时间方向用中点辛格式对半离散方程进行数值求解,得到了非线性“good”Boussinesq方程的多辛Fourier拟谱格式.数值实验能很好地模拟原孤立波的运动,验证了所构造格式的有效性与长时间的数值稳定性.  相似文献   

16.
广义Pochhammer-Chree方程的多辛Fourier拟谱格式及孤立波试验   总被引:1,自引:1,他引:0  
通过变换,将广义Pochhammer-Chree(PC)方程转化为多辛形式的方程组.在空间方向利用Fourier拟谱方法,在时间方向利用Euler中点格式进行离散此方程组,得到广义PC方程的多辛Fourier拟谱格式及其离散多辛守恒律.孤立波的数值模拟试验验证所构造格式的有效性,以及广义PC方程的孤立波相互作用是非弹性的事实.  相似文献   

17.
梁振动方程的多辛算法   总被引:3,自引:0,他引:3  
本文提出了梁振动方程的一个多辛Hamilton形式,并利用中点辛离散得到一个等价于多辛Priessman积分的新格式,进而证明了它是无条件稳定且收敛,最后用数值例子表明了理论分析的正确性。  相似文献   

18.
考虑非线性Pochhammer-Chree方程的多辛结构,通过辛离散多辛结构得到原偏微分方程的多辛算法.孤立波的数值模拟试验结果表明,所构造的多辛算法是有效的,具有良好的长时间数值行为.  相似文献   

19.
对广义非线性Schr?dinger方程的多辛方程组,在空间方向用拟谱方法,时间方向用辛欧拉方法进行离散,得到该方程的一个半显式多辛拟谱格式.数值实验结果表明,所构造的格式具有长时间的数值行为,且能很好地保持原方程的电荷与能量守恒律.  相似文献   

20.
基于其多辛方程组的形式,对满足周期边界条件的KdV方程,在空间方向用Fourier拟谱方法、时间方向用中点隐式辛格式进行离散,得到了KdV方程的多辛Fourier拟谱格式及其相应的守恒律.对不同的孤立波解进行数值模拟,结果验证了所构造格式的有效性与长期数值稳定性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号