首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以1.5 MW风电齿轮箱高速端轴承为研究对象,引入随机载荷循环作用下的结构疲劳寿命预测模型,分析随机风载条件下径向载荷和轴向载荷对风电齿轮箱轴承疲劳寿命的影响;运用概率加权法和线性Miner累计损伤法则,给出疲劳寿命与应力之间的关系;提出一种随机载荷条件下风电齿轮箱轴承寿命预测的方法,用该方法对1.5 MW风电齿轮箱高速端轴承的疲劳寿命进行分析计算,结果为13.189a.该方法考虑了载荷的随机性,并以随机载荷作用下所引起的随机应力作为计算疲劳寿命的依据.相比其他方法更加接近于工程实际,预测结果更为准确.  相似文献   

2.
为对随机载荷作用下风电叶片的疲劳寿命及可靠性进行预测与评估,首先基于Miner累积损伤理论及全概率公式,推导出随机载荷作用下风电叶片的疲劳寿命预测模型;然后根据寿命等效原则(即随机载荷下的疲劳寿命与恒幅载荷下的疲劳寿命相等)提出了随机载荷下风电叶片疲劳可靠性评估的等效应力试验法;最后通过风电叶片复合材料的疲劳试验数据对本文方法的有效性进行验证.结果表明:本文方法能够有效预测与评估风电叶片复合材料的疲劳寿命及可靠性,为随机载荷作用下风电叶片的疲劳寿命预测及可靠性试验评估提供理论依据.  相似文献   

3.
本文论述了高周疲劳构件在平稳随机载荷作用下寿命预估的频域分析法,在现有文献和理论的基础上,给出了宽带高斯应力作用下,由危险点应力过程的自功率谱函数直接估算疲劳寿命的公式,并作了初步验证,适用于工程设计阶段和解决危险点应力-时间历程难以实测的疲劳问题.  相似文献   

4.
本文从影响疲劳裂纹扩展随机性的外因(载荷条件)和内因(材质的分布规律)着手,探讨它们的交互作用对随机载荷作用下构件疲劳裂纹扩展的影响,采用数值模拟的方法,对桥梁、船舶、飞机、特殊容器等大型构件所承受的实际载荷谱以及材料对裂纹扩展的阻力系数等进行模拟,并进而对疲劳裂纹的随机扩展过程进行模拟,提出随机载荷作用下大型构件疲劳裂纹扩展寿命的预测及其可靠性分析方法.  相似文献   

5.
以1.5MW水平轴风电齿轮箱的太阳轮为研究对象,基于随机载荷作用下的机械零部件动态可靠性模型,对风电齿轮箱太阳轮的可靠度和失效率进行分析与计算,给出风电齿轮箱太阳轮可靠度和失效率随时间变化的曲线,得到齿轮箱太阳轮可靠度和失效率随时间的变化规律.分析结果表明,风电齿轮箱太阳轮的可靠度随时间逐渐降低,失效率随时间逐渐减小,失效率曲线具有"浴盆"曲线中早期失效的特征.该分析结果验证了机械零部件动态可靠性模型的可行性和实用性,对风电齿轮箱零部件试验时间和可靠性寿命的确定具有一定的指导意义.  相似文献   

6.
宽带随机载荷谱下结构疲劳寿命的计算   总被引:2,自引:0,他引:2  
以目前国际上普遍认可的一种雨流循环计数应力范围概率密度函数为依据,采用结构危险部位疲劳寿命曲线,利用不完全Gamma函数,建立了一种宽带随机载荷谱下结构疲劳寿命计算的一种解析解法,为在宽带随机载荷谱下服役的结构在设计阶段用频域法进行疲劳寿命计算提供了一种快捷方法。  相似文献   

7.
本文在试验结果和理论分析的基础上,提出了高周载荷作用下微动疲劳寿命的预测公式.  相似文献   

8.
基于多轴疲劳临界损伤面原理,在对GH4169合金薄壁圆管和缺口试件的高温疲劳特性及有限元应力-应变关系进行分析的基础上,通过引入三轴因子FT,应用von-Mises准则提出了一个能够适用于GH4169合金不同应力状态的多轴疲劳损伤参量.新的损伤参量考虑了临界面上最大剪应变和法向应变对多轴疲劳损伤的不同以及应力状态对多轴疲劳寿命的影响.该多轴疲劳损伤参量不含有经验常数,便于工程应用.利用新的多轴疲劳损伤参量,结合Manson-Coffin方程,建立了新的多轴疲劳寿命预测模型.预测结果表明,该模型较准确地预测了GH4169合金薄壁圆管和缺口试件的高温多轴疲劳寿命.  相似文献   

9.
研究了超载对LY12CZ铝合金疲劳裂纹起始寿命的影响,得出了超载前后带存活率的疲劳裂纹起始寿命的定量表达式.提出了在变幅载荷下,铝合金切口件疲劳裂纹起始寿命概率分布的预测方法,并进行了实验验证.结果表明这种预测方法是切实可行的.  相似文献   

10.
文章建立了纤维金属层板等幅疲劳载荷下的疲劳裂纹扩展速率与寿命预测模型。在此基础上对玻璃纤维-铝合金层板(GLARE)的疲劳裂纹扩展与分层扩展行为进行了试验研究,探讨了层板过载疲劳行为的机理,提出了纤维金属层板变幅载荷下疲劳寿命预测的等效裂纹闭合模型,并在GLARE层板上得到了验证。  相似文献   

11.
从疲劳过程本质上是材料静强度不断退化过程的观点出发,建立了一个强度退化模型.将模型应用于两级、多级和随机载荷下疲劳寿命估算,经试验和算例验证,表明该方法是合理可行的  相似文献   

12.
本文主要探讨了恒幅和变幅载荷作用下疲劳裂纹扩展规律及随机载荷作用下疲劳寿命的模拟方法。通过对16Mn钢的疲劳裂纹扩展试验、分析和数据处理估算出材料的疲劳寿命,说明考虑了载荷实际变动能更接近准确地估算疲劳寿命,为生产设计提供了依据。 对随机载荷的统计分析建立概率模型,并用数值计算方法——蒙特卡罗法产生随枫序列,由计算机程序模拟计算出疲劳寿命.它和变幅试验结果基本符合.说明此法应用于断裂力学中是可行的.它是对传统疲劳试验和分析方法的改进和发展.  相似文献   

13.
采用多体动力学与三维弹性体非赫兹滚动接触理论,得到不同轨底坡、超高、摩擦系数与曲线半径等多种轨道条件下的轮轨蠕滑状态,将接触力分别施加于钢轨有限元模型的接触斑位置,分析轨头应力应变响应,得到所有节点的疲劳参量.研究疲劳参量的组成类型,若剪应力与应变部分占主要组成部分,则采用剪切型裂纹萌生预测公式,否则采用拉伸型预测公式.分别预测导向轮与非导向轮作用下的曲线外轨疲劳裂纹萌生寿命,结果表明,外轨疲劳裂纹主要由导向轮作用产生,非导向轮对其影响很小;裂纹萌生寿命随曲线半径的增大而延长,随摩擦系数的增大而减小;设置1∶20轨底坡可以延缓外轨疲劳裂纹萌生,尤其是在半径较小的曲线上效果更明显;过超高能延缓曲线外轨疲劳裂纹萌生;当摩擦系数大于0.3时裂纹萌生于曲线外轨表面,而小于0.3时裂纹萌生位置则逐渐向轨头内部转移.  相似文献   

14.
本文利用作者先前提出的疲劳裂纹扩展概率分析模型da/dN=(ΔK/K0)m(i)/Z(x)对裂纹扩展进行数值模拟,进而提出常幅载荷作用下预测大型构件的疲劳裂纹随机扩展寿命的有效方法。数值模拟和以往的实验结果表明,本文所提出的方法能有效地模拟疲劳裂纹的随机扩展过程,推导出其扩展寿命的概率分布函数和进行可靠性分析,预测构件的寿命和推算其最小寿命。  相似文献   

15.
应用应力场强度理论,分析、推导按宇航标准进行随机扫描振动中,复合循环应力作用下材料的应力函数f(iδj)和应力场强度δF1的具体形式,建立随机扫描振动的振动量值与结构疲劳寿命的直接联系,对在高频率(500-2 000 Hz)阶段材料的塑性行为和实验数据进行分析,得到适用于LY12-CZ的寿命修正因数.同时,通过对三因数公式进行修正,得出复合循环应力作用下,预计结构抗振动疲劳寿命的经验公式.  相似文献   

16.
为了探讨齿轮弯曲疲劳寿命计算问题,将齿轮疲劳总寿命分为两个阶段,即疲劳裂纹萌生寿命和裂纹扩展寿命。通过 ADAMS 软件仿真实验齿轮的工作情况,使其接近真实状况,得到齿轮载荷谱。根据齿轮载荷谱,利用有限元ANSYS 软件分析在齿轮齿根危险截面处的最大应力。采用断裂力学、雨流法和 Miner 疲劳损伤累积模型,对考虑动载荷情况下的齿轮弯曲疲劳寿命进行预测,推导了齿根裂纹萌生期和扩展期的疲劳寿命计算公式。在高频疲劳试验机上对算例齿轮进行了双齿脉动加载齿根弯曲疲劳寿命实验研究,理论计算结果与实验结果基本吻合,验证了本文理论分析的正确性。  相似文献   

17.
概述了随机疲劳寿命估算的一般过程,就该过程中的局部真实应力应变分析的简化计算方法和随机载荷下的循环应力应变模拟及疲劳损伤进行了探讨。依据实验结果,提出了一个能量损伤模型,通过寿命估算,对提出的模型进行了验证,并将其估算结果与现有的几种典型疲劳损伤模型估算结果进行了比较。同时,还讨论了疲劳性能参数的波动对寿命估算精度的影响。  相似文献   

18.
疲劳载荷谱加重已成为加速试验的重要研究内容;它对单裂纹扩展影响的研究很有价值。以Paris裂纹扩展模型为基础,进行理论推导。提出了单裂纹在加重谱作用下裂纹扩展寿命的估算方法,分别是基于循环次数的次估算法和基于谱块数的块估算法。利用原始载荷谱的试验结果分别计算得到加重谱下的两种估算结果,设计试验对估算结果进行验证,证明了方法的可行性。研究结果可作为加快全尺寸飞机结构疲劳试验的参考。  相似文献   

19.
高低周或低高周复合载荷作用下的疲劳破坏广泛存在于飞机发动机等结构中。基于多机制损伤耦合模型,分别建立了高低周、低高周两级加载下金属疲劳寿命预估模型。通过LY12CZ铝合金两级加载疲劳试验对提出的低高周复合疲劳寿命预估模型进行了验证,并将其与Miner线性模型进行了对比。结果表明:提出的低高周复合疲劳寿命预估模型预测结果更为准确。  相似文献   

20.
基于船舶等工程结构物在服役过程中的受载历程是一个随机过程,提出了一个由应力比和裂纹尖端约束及塑性区尺寸为主要参数计算裂纹张开比来考虑载荷相互作用的疲劳裂纹扩展寿命计算模型.用该模型对几种谱载荷作用下疲劳实验结果进行了预测.预测结果和不考虑裂纹闭合的线性损伤模型及疲劳计算程序FASTRAN预测结果进行了比较,表明本模型能较好地预测谱载荷作用下的疲劳裂纹扩展.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号