首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 712 毫秒
1.
Disorders in which individuals exhibit certain features of aging early in life are referred to as segmental progeroid syndromes. With the progress that has been made in understanding the etiologies of these conditions in the past decade, potential therapeutic options have begun to move from the realm of improbability to initial stages of testing. Among these syndromes, relevant advances have recently been made in Werner syndrome, one of several progeroid syndromes characterized by defective DNA helicases, and Hutchinson-Gilford progeria syndrome, which is characterized by aberrant processing of the nuclear envelope protein lamin A. Although best known for their causative roles in these illnesses, Werner protein and lamin A have also recently emerged as key players vulnerable to epigenetic changes that contribute to tumorigenesis and aging. These advances further demonstrate that understanding progeroid syndromes and introducing adequate treatments will not only prove beneficial to patients suffering from these dramatic diseases, but will also provide new mechanistic insights into cancer and normal aging processes. Received 28 July 2006; received after revision 5 September 2006; accepted 13 October 2006  相似文献   

2.
3.
Summary The difference of collagen producibility between 2 groups of skin fibroblasts from patients with Werner's syndrome with skin change and with normal skin, and the difference of collagen accumulation to cell layer between skin fibroblast from Werner's syndrome and controls were studied.Acknowledgments. We are grateful to Dr M. Ohkido and Dr I. Matsuo of the Department of Dermatology of Tokai University for their supply of materials and generous advice and Mr K. Takeichi of the Department of Pathology of Tokai University for his technical assistance.  相似文献   

4.
Recent advances in research have greatly increased our understanding of the importance of the gut microbiota. Bacterial colonization of the intestine is critical to the normal development of many aspects of physiology such as the immune and endocrine systems. It is emerging that the influence of the gut microbiota also extends to modulation of host neural development. Furthermore, the overall balance in composition of the microbiota, together with the influence of pivotal species that induce specific responses, can modulate adult neural function, peripherally and centrally. Effects of commensal gut bacteria in adult animals include protection from the central effects of infection and inflammation as well as modulation of normal behavioral responses. There is now robust evidence that gut bacteria influence the enteric nervous system, an effect that may contribute to afferent signaling to the brain. The vagus nerve has also emerged as an important means of communicating signals from gut bacteria to the CNS. Further understanding of the mechanisms underlying microbiome–gut–brain communication will provide us with new insight into the symbiotic relationship between gut microbiota and their mammalian hosts and help us identify the potential for microbial-based therapeutic strategies to aid in the treatment of mood disorders.  相似文献   

5.
F V DeFeudis 《Experientia》1983,39(8):845-849
Evidence supporting the hypothesis that GABA-ergic mechanisms are involved in controlling mammalian cardiovascular function has been reviewed and analyzed. In vivo and in vitro studies with GABA-agonists and GABA-antagonists have revealed that activation of GABA-receptors is involved in the control of blood pressure and heart rate. Further studies conducted with agents that modify central and/or peripheral GABA-ergic systems could lead to the discovery of drugs that might be useful for treating certain cardiovascular disorders in man, such as hypertension and stroke, and should increase our understanding of the pathophysiological bases of such disorders.  相似文献   

6.
Peroxisomes are vital intracellular organelles which house enzymes involved in a variety of metabolic pathways. The large number of human disorders associated with flawed peroxisome biogenesis emphasizes the importance of protein targeting to, and translocation across, the peroxisomal membrane. This brief review will summarize some of the emerging themes of peroxisomal protein import, specifically addressing the targeting signals possessed by constituent proteins, as well as the cytosolic, membrane and luminal components of the import machinery. Although a detailed understanding of the molecular mechanisms of peroxisomal protein import is not yet available, remarkable progress has been made in the field in recent years. An overview of these advances will be presented.  相似文献   

7.
Recent genetic and technological advances have determined a role for chromatin structure in neurodevelopment. In particular, compounding evidence has established roles for CTCF and cohesin, two elements that are central in the establishment of chromatin structure, in proper neurodevelopment and in regulation of behavior. Genetic aberrations in CTCF, and in subunits of the cohesin complex, have been associated with neurodevelopmental disorders in human genetic studies, and subsequent animal studies have established definitive, although sometime opposing roles, for these factors in neurodevelopment and behavior. Considering the centrality of these factors in cellular processes in general, the mechanisms through which dysregulation of CTCF and cohesin leads specifically to neurological phenotypes is intriguing, although poorly understood. The connection between CTCF, cohesin, chromatin structure, and behavior is likely to be one of the next frontiers in our understanding of the development of behavior in general, and neurodevelopmental disorders in particular.  相似文献   

8.
Summary The composition of urinary acidic glycosaminoglycans (AGAG) in 4 patients with Werner's syndrome was determined by an enzymatic assay system using chondroitinases and hyaluronidase. In Werner's syndrome, the amount of hyaluronic acid and heparan sulfates in the total AGAG increases. A compositional change in the chondroitin sulfate isomers occurs. The change of urinary AGAG in Werner's syndrome appears to reflect age-related changes.The study was supported, in part, by Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, the Life Science of the Institute of Physical and Chemical Research and the Adult Disease Clinic Memorial Foundation, Tokyo. Thanks are due to Dr Y. Yamada and Dr R. Abe for collecting specimens, and Miss R. Abe and Miss R. Yamaguchi for technical assistance.  相似文献   

9.
Memory     
Progress towards amelioration and eventual cure of human cognitive disorders requires understanding the molecular signaling mechanisms that normally govern learning and memory. The fly Drosophila melanogaster has been instrumental in the identification of molecules and signaling pathways essential for learning and memory, because genetic screens have produced mutants in these processes and the system facilitates integrated genetic, molecular, histological and behavioral analyses. We discuss the behavioral paradigms available to assess associative learning and memory in the fly, the contributions learning and memory mutants have made to our understanding of the molecular mechanisms that govern learning and memory, and predictions stemming from the nature of the affected genes. Furthermore, we consider the multiple well-established behavioral assays available and the powerful molecular genetics of the fly with regard to development of models of human cognitive disorders and their pharmacological treatment.  相似文献   

10.
Developmental genetics   总被引:1,自引:0,他引:1  
C J Epstein 《Experientia》1986,42(10):1117-1128
Of particular concern to the human geneticist are the effects of genetic abnormalities on development. To gain an understanding of these effects it is necessary to engage in a reciprocal process of using knowledge of normal developmental events to elucidate the mechanisms operative in abnormal situations and then of using what is learned about these abnormal situations to expand our understanding of the normal. True developmental genes have not been described in man, although it is likely that they exist, but many developmental abnormalities are ascribable to mutations in genes coding for enzymes and structural proteins. Some of these even produce multiple malformation syndromes with dysmorphic features. These situations provide a precedent for asserting that not only monogenic developmental abnormalities, but also abnormalities resulting from chromosome imbalance must ultimately be explicable in molecular terms. However, the major problem confronted by the investigator interested in the pathogenesis of any of the chromosome anomaly syndromes is to understand how the presence of an extra set of normal genes or the loss of one of two sets of genes has an adverse effect on development. Several molecular mechanisms for which limited precedents exist may be considered on theoretical grounds. Because of the difficulties in studying developmental disorders in man, a variety of experimental systems have been employed. Particularly useful has been the mouse, which provides models for both monogenic and aneuploidy produced abnormalities of development. An example of the former is the mutation oligosyndactylism which in the heterozygous state causes oligosyndactyly and in the homozygous state causes early embryonic mitotic arrest. All whole arm trisomies and monosomies of the mouse can be produced experimentally, and of special interest is mouse trisomy 16 which has been developed as an animal model of human trisomy 21 (Down syndrome). In the long run, the most direct approach to elucidating the genetic problems of human development will involve not only the study of man himself but also of the appropriate experimental models in other species.  相似文献   

11.
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.  相似文献   

12.
13.
The steroid hormone estrogen and signaling from its receptors are increasingly recognized as critical mediators of a variety of organ-specific biological processes. Recent advances in the identification and functional characterization of novel estrogen receptor interacting proteins clearly show the complexity of hormonal signaling regulation, but may also contribute to our understanding of the roles of estrogen signaling in normal physiology and the pathobiology of human disease.Received 12 June 2003; received after revision 21 July 2003; accepted 29 July 2003  相似文献   

14.
Helicases and aging   总被引:1,自引:0,他引:1  
  相似文献   

15.
Dysfunction of the mitochondrial respiratory chain has been recognised as a cause of human disease for over 30 years. Advances in the past 10 years have led to a better understanding of the genetics and molecular pathogenesis of many of these disorders. Over 100 primary defects in mitochondrial DNA (mtDNA) are now implicated in the pathogenesis of a group of disorders which are collectively known as the mitochondrial encephalomyopathies, and which most frequently involve skeletal muscle and/or the central nervous system. Although impaired oxidative phosphorylation is likely to be the final common pathway leading to the cellular dysfunction associated with such mtDNA mutations, the complex relationship between genotype and phenotype remains largely unexplained. Most of the genes which encode the respiratory chain reside in the nucleus, yet only five nuclear genes have been implicated in human respiratory chain diseases. There is evidence that respiratory chain dysfunction is present in common neurological diseases such as Parkinson's disease and Huntington's disease. The precise cause of this respiratory chain dysfunction and its relationship to the disease process are unclear. This review focuses upon respiratory chain disorders associated with primary defects in mtDNA.  相似文献   

16.
DNA methylation is a stable but not irreversible epigenetic signal that silences gene expression. It has a variety of important functions in mammals, including control of gene expression, cellular differentiation and development, preservation of chromosomal integrity, parental imprinting and X-chromosome inactivation. In addition, it has been implicated in brain function and the development of the immune system. Somatic alterations in genomic methylation patterns contribute to the etiology of human cancers and ageing. It is tightly interwoven with the modification of histone tails and other epigenetic signals. Here we review our current understanding of the molecular enzymology of the mammalian DNA methyltransferases Dnmt1, Dnmt3a, Dnmt3b and Dnmt2 and the roles of the enzymes in the above-mentioned biological processes.  相似文献   

17.
Clinical depression is viewed as a physical and psychic disease process having a neuropathological basis, although a clear understanding of its ethiopathology is still missing. The observation that depressive symptoms are influenced by pharmacological manipulation of monoamines led to the hypothesis that depression results from reduced availability or functional deficiency of monoaminergic transmitters in some cerebral regions. However, there are limitations to current monoamine theories related to mood disorders. Recently, a growing body of experimental data has showed that other classes of endogenous compounds, such as neuropeptides and amino acids, may play a significant role in the pathophysiology of affective disorders. With the development of neuroscience, neuronal networks and intracellular pathways have been identified and characterized, describing the existence of the interaction between monoamines and receptors in turn able to modulate the expression of intracellular proteins and neurotrophic factors, suggesting that depression/antidepressants may be intermingled with neurogenesis/neurodegenerative processes.  相似文献   

18.
Most of fundamental studies on protein folding have been performed with small globular proteins consisting of a single domain. In vitro many of these proteins are well characterized by a reversible two-state folding scheme. However, the majority of proteins in the cell belong to the class of larger multi-domain proteins that often unfold irreversibly under in vitro conditions. This makes folding studies difficult or even impossible. In spite of these problems for many multi-domain proteins, folding has been investigated by classical refolding. Co-translational folding of nascent polypeptide chains when synthesized by ribosomes has also been studied. Single molecule techniques represent a promising approach for future studies on the folding of multi-domain proteins, and tremendous advances have been made in these techniques in recent years. In particular, fluorescence-based methods can contribute significantly to an understanding of the fundamental principles of multi-domain protein folding. Received 3 December 2008; accepted 23 December 2008  相似文献   

19.
Summary Of particular concern to the human geneticist are the effects of genetic abnormalities on development. To gain an understanding of these effects it is necessary to engage in a reciprocal process of using knowledge of normal developmental events to elucidate the mechanisms operative in abnormal situations and then of using what is learned about these abnormal situations to expand our understanding of the normal. True developmental genes have not been described in man, although it is likely that they exist, but many developmental abnormalities are ascribable to mutations in genes coding for enzymes and structural proteins. Some of these even produce multiple malformation syndromes with dysmorphic features. These situations provide a precedent for asserting that not only monogenic developmental abnormalities, but also abnormalities resulting from chromosome imbalance must ultimately be explicable in molecular terms. However, the major problem confronted by the investigator interested in the pathogenesis of any of the chromosome anomaly syndromes is to understand how the presence of an extra set of normal genes or the loss of one of two sets of genes has an adverse effect on development. Several molecular mechanisms for which limited precedents exist may be considered on theoretical grounds. Because of the difficulties in studying developmental disorders in man, a variety of experimental systems have been employed. Particularly useful has been the mouse, which provides models for both monogenic and aneuploidy produced abnormalities of development. An example of the former is the mutation oligosyndactylism which in the heterozygous state causes oligosyndactyly and in the homozygous state causes early embryonic mitotic arrest. All whole arm trisomies and monosomies of the mouse can be produced experimentally, and of special interest is mouse trisomy 16 which has been developed as an animal model of human trisomy 21 (Down syndrome). In the long run, the most direct approach to elucidating the genetic problems of human development will involve not only the study of man himself but also of the appropriate experimental models in other species.Acknowledgments. This review was written while the author was a Henry J. Kaiser Senior Fellow at the Center for Advanced Study in the Behavioral Sciences, Palo Alto, California. This work was supported by grants from the National Institutes of Health (GM-24309, HD-03132, HD-15583, HD-17001) and the American Cancer Society (CD-119) and by a contract from the National Institute of Child Health and Human Development (NOI-HD-2858).  相似文献   

20.
During the development of the neocortex, neurogenesis and neuronal differentiation occur in two separate locations. Thus neurons have to migrate through the future white matter. Arrested or excessive migration leads neurons to differentiate in a heterotopic position. Such neuronal migration disorders (NMDs) occur sporadically in normal development but are markedly increased as a consequence of genetic defects or after exposure to toxic drugs during the period of migration. Anatomofunctional studies in rodents with NMDs have revealed that heterotopic neurons form essentially normal afferent and efferentconnections, which has been interpreted as evidence that the connectionpattern of cortical neurons is specified prior to migration. In addition, recent data show that heterotopic neurons can be contacted by environmental, that is local, fibres that normally never innervate the neocortex. This dual connectivity leads heterotopias to form bridges between their environmental and original network. Such an abnormal pattern of connectivity could contribute to the pathophysiology of disorders associated with NMDs such as epilepsy. Received 16 December 1998; received after revision 5 February 1999; accepted 9 February 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号