共查询到16条相似文献,搜索用时 0 毫秒
1.
The HMGI family of proteins consists of three members, HMGIC, HMGI and HMGI(Y), that function as architectural factors and are essential components of the enhancesome. HMGIC is predominantly expressed in proliferating, undifferentiated mesenchymal cells and is not detected in adult tissues. It is disrupted and misexpressed in a number of mesenchymal tumour cell types, including fat-cell tumours (lipomas). In addition Hmgic-/- mice have a deficiency in fat tissue. To study its role in adipogenesis and obesity, we examined Hmgic expression in the adipose tissue of adult, obese mice. Mice with a partial or complete deficiency of Hmgic resisted diet-induced obesity. Disruption of Hmgic caused a reduction in the obesity induced by leptin deficiency (Lepob/Lepob) in a gene-dose-dependent manner. Our studies implicate a role for HMGIC in fat-cell proliferation, indicating that it may be an adipose-specific target for the treatment of obesity. 相似文献
2.
3.
Type 1 diabetes is an autoimmune disease influenced by multiple genetic loci. Although more than 20 insulin-dependent diabetes (Idd) loci have been implicated in the nonobese diabetic (NOD) mouse model, few causal gene variants have been identified. Here we show that RNA interference (RNAi) can be used to probe candidate genes in this disease model. Slc11a1 encodes a phagosomal ion transporter, Nramp1, that affects resistance to intracellular pathogens and influences antigen presentation. This gene is the strongest candidate among the 42 genes in the Idd5.2 region; a naturally occurring mutation in the protective Idd5.2 haplotype results in loss of function of the Nramp1 protein. Using lentiviral transgenesis, we generated NOD mice in which Slc11a1 is silenced by RNAi. Silencing reduced the frequency of type 1 diabetes, mimicking the protective Idd5.2 region. Our results demonstrate a role for Slc11a1 in modifying susceptibility to type 1 diabetes and illustrate that RNAi can be used to study causal genes in a mammalian model organism. 相似文献
4.
Pearson RD 《Nature genetics》2011,43(5):392-3; author reply 394-5
5.
6.
Richardson RJ Dixon J Malhotra S Hardman MJ Knowles L Boot-Handford RP Shore P Whitmarsh A Dixon MJ 《Nature genetics》2006,38(11):1329-1334
The epidermis is a highly organized structure, the integrity of which is central to the protection of an organism. Development and subsequent maintenance of this tissue depends critically on the intricate balance between proliferation and differentiation of a resident stem cell population; however, the signals controlling the proliferation-differentiation switch in vivo remain elusive. Here, we show that mice carrying a homozygous missense mutation in interferon regulatory factor 6 (Irf6), the homolog of the gene mutated in the human congenital disorders Van der Woude syndrome and popliteal pterygium syndrome, have a hyperproliferative epidermis that fails to undergo terminal differentiation, resulting in soft tissue fusions. We further demonstrate that mice that are compound heterozygotes for mutations in Irf6 and the gene encoding the cell cycle regulator protein stratifin (Sfn; also known as 14-3-3sigma) show similar defects of keratinizing epithelia. Our results indicate that Irf6 is a key determinant of the keratinocyte proliferation-differentiation switch and that Irf6 and Sfn interact genetically in this process. 相似文献
7.
Inversin, the gene product mutated in nephronophthisis type II, functions as a molecular switch between Wnt signaling pathways 总被引:21,自引:0,他引:21
Simons M Gloy J Ganner A Bullerkotte A Bashkurov M Krönig C Schermer B Benzing T Cabello OA Jenny A Mlodzik M Polok B Driever W Obara T Walz G 《Nature genetics》2005,37(5):537-543
Cystic renal diseases are caused by mutations of proteins that share a unique subcellular localization: the primary cilium of tubular epithelial cells. Mutations of the ciliary protein inversin cause nephronophthisis type II, an autosomal recessive cystic kidney disease characterized by extensive renal cysts, situs inversus and renal failure. Here we report that inversin acts as a molecular switch between different Wnt signaling cascades. Inversin inhibits the canonical Wnt pathway by targeting cytoplasmic dishevelled (Dsh or Dvl1) for degradation; concomitantly, it is required for convergent extension movements in gastrulating Xenopus laevis embryos and elongation of animal cap explants, both regulated by noncanonical Wnt signaling. In zebrafish, the structurally related switch molecule diversin ameliorates renal cysts caused by the depletion of inversin, implying that an inhibition of canonical Wnt signaling is required for normal renal development. Fluid flow increases inversin levels in ciliated tubular epithelial cells and seems to regulate this crucial switch between Wnt signaling pathways during renal development. 相似文献
8.
Bielinska B Blaydes SM Buiting K Yang T Krajewska-Walasek M Horsthemke B Brannan CI 《Nature genetics》2000,25(1):74-78
Prader-Willi syndrome (PWS) is a neurogenetic disease characterized by infantile hypotonia, gonadal hypoplasia, obsessive behaviour and neonatal feeding difficulties followed by hyperphagia, leading to profound obesity. PWS is due to a lack of paternal genetic information at 15q11-q13 (ref. 2). Five imprinted, paternally expressed genes map to the PWS region, MKRN3 (ref. 3), NDN (ref. 4), NDNL1 (ref. 5), SNRPN (refs 6-8 ) and IPW (ref. 9), as well as two poorly characterized framents designated PAR-1 and PAR-5 (ref. 10). Imprinting of this region involves a bipartite 'imprinting centre' (IC), which overlaps SNRPN (refs 10,11). Deletion of the SNRPN promoter/exon 1 region (the PWS IC element) appears to impair the establishment of the paternal imprint in the male germ line and leads to PWS. Here we report a PWS family in which the father is mosaic for an IC deletion on his paternal chromosome. The deletion chromosome has acquired a maternal methylation imprint in his somatic cells. We have made identical findings in chimaeric mice generated from two independent embryonic stem (ES) cell lines harbouring a similar deletion. Our studies demonstrate that the PWS IC element is not only required for the establishment of the paternal imprint, but also for its postzygotic maintenance. 相似文献
9.
10.
Repping S Skaletsky H Brown L van Daalen SK Korver CM Pyntikova T Kuroda-Kawaguchi T de Vries JW Oates RD Silber S van der Veen F Page DC Rozen S 《Nature genetics》2003,35(3):247-251
Many human Y-chromosomal deletions are thought to severely impair reproductive fitness, which precludes their transmission to the next generation and thus ensures their rarity in the population. Here we report a 1.6-Mb deletion that persists over generations and is sufficiently common to be considered a polymorphism. We hypothesized that this deletion might affect spermatogenesis because it removes almost half of the Y chromosome's AZFc region, a gene-rich segment that is critical for sperm production. An association study established that this deletion, called gr/gr, is a significant risk factor for spermatogenic failure. The gr/gr deletion has far lower penetrance with respect to spermatogenic failure than previously characterized Y-chromosomal deletions; it is often transmitted from father to son. By studying the distribution of gr/gr-deleted chromosomes across the branches of the Y chromosome's genealogical tree, we determined that this deletion arose independently at least 14 times in human history. We suggest that the existence of this deletion as a polymorphism reflects a balance between haploid selection, which culls gr/gr-deleted Y chromosomes from the population, and homologous recombination, which continues to generate new gr/gr deletions. 相似文献
11.
12.
Single nucleotide polymorphisms (SNPs) are valuable genetic markers of human disease. They also comprise the highest potential density marker set available for mapping experimentally derived mutations in model organisms such as Caenorhabditis elegans. To facilitate the positional cloning of mutations we have identified polymorphisms in CB4856, an isolate from a Hawaiian island that shows a uniformly high density of polymorphisms compared with the reference Bristol N2 strain. Based on 5.4 Mbp of aligned sequences, we predicted 6,222 polymorphisms. Furthermore, 3,457 of these markers modify restriction enzyme recognition sites ('snip-SNPs') and are therefore easily detected as RFLPs. Of these, 493 were experimentally confirmed by restriction digest to produce a snip-SNP map of the worm genome. A mapping strategy using snip-SNPs and bulked segregant analysis (BSA) is outlined. CB4856 is crossed into a mutant strain, and exclusion of CB4856 alleles of a subset of snip-SNPs in mutant progeny is assessed with BSA. The proximity of a linked marker to the mutation is estimated by the relative proportion of each form of the biallelic marker in populations of wildtype and mutant genomes. The usefulness of this approach is illustrated by the rapid mapping of the dyf-5 gene. 相似文献
13.
Whole-genome sequencing and comprehensive variant analysis of a Japanese individual using massively parallel sequencing 总被引:1,自引:0,他引:1
Fujimoto A Nakagawa H Hosono N Nakano K Abe T Boroevich KA Nagasaki M Yamaguchi R Shibuya T Kubo M Miyano S Nakamura Y Tsunoda T 《Nature genetics》2010,42(11):931-936
We report the analysis of a Japanese male using high-throughput sequencing to × 40 coverage. More than 99% of the sequence reads were mapped to the reference human genome. Using a Bayesian decision method, we identified 3,132,608 single nucleotide variations (SNVs). Comparison with six previously reported genomes revealed an excess of singleton nonsense and nonsynonymous SNVs, as well as singleton SNVs in conserved non-coding regions. We also identified 5,319 deletions smaller than 10 kb with high accuracy, in addition to copy number variations and rearrangements. De novo assembly of the unmapped sequence reads generated around 3 Mb of novel sequence, which showed high similarity to non-reference human genomes and the human herpesvirus 4 genome. Our analysis suggests that considerable variation remains undiscovered in the human genome and that whole-genome sequencing is an invaluable tool for obtaining a complete understanding of human genetic variation. 相似文献
14.
A humanized model for multiple sclerosis using HLA-DR2 and a human T-cell receptor 总被引:14,自引:0,他引:14
Madsen LS Andersson EC Jansson L krogsgaard M Andersen CB Engberg J Strominger JL Svejgaard A Hjorth JP Holmdahl R Wucherpfennig KW Fugger L 《Nature genetics》1999,23(3):343-347
Multiple sclerosis (MS) is a complex chronic neurologic disease with a suspected autoimmune pathogenesis. Although there is evidence that the development of MS is determined by both environmental influences and genes, these factors are largely undefined, except for major histocompatibility (MHC) genes. Linkage analyses and association studies have shown that susceptibility to MS is associated with genes in the human histocompatibility leukocyte antigens (HLA) class II region, but the contribution of these genes to MS disease development less compared with their contribution to disorders such as insulin-dependent diabetes mellitus. Due to the strong linkage disequilibrium in the MHC class II region, it has not been possible to determine which gene(s) is responsible for the genetic predisposition. In transgenic mice, we have expressed three human components involved in T-cell recognition of an MS-relevant autoantigen presented by the HLA-DR2 molecule: DRA*0101/DRB1*1501 (HLA-DR2), an MHC class II candidate MS susceptibility genes found in individuals of European descent; a T-cell receptor (TCR) from an MS-patient-derived T-cell clone specific for the HLA-DR2 bound immunodominant myelin basic protein (MBP) 4102 peptide; and the human CD4 coreceptor. The amino acid sequence of the MBP 84-102 peptide is the same in both human and mouse MBP. Following administration of the MBP peptide, together with adjuvant and pertussis toxin, transgenic mice developed focal CNS inflammation and demyelination that led to clinical manifestations and disease courses resembling those seen in MS. Spontaneous disease was observed in 4% of mice. When DR2 and TCR double-transgenic mice were backcrossed twice to Rag2 (for recombination-activating gene 2)-deficient mice, the incidence of spontaneous disease increased, demonstrating that T cells specific for the HLA-DR2 bound MBP peptide are sufficient and necessary for development of disease. Our study provides evidence that HLA-DR2 can mediate both induced and spontaneous disease resembling MS by presenting an MBP self-peptide to T cells. 相似文献
15.
The primary impediment to formulating a general theory for adaptive evolution has been the unknown distribution of fitness effects for new beneficial mutations. By applying extreme value theory, Gillespie circumvented this issue in his mutational landscape model for the adaptation of DNA sequences, and Orr recently extended Gillespie's model, generating testable predictions regarding the course of adaptive evolution. Here we provide the first empirical examination of this model, using a single-stranded DNA bacteriophage related to phiX174, and find that our data are consistent with Orr's predictions, provided that the model is adjusted to incorporate mutation bias. Orr's work suggests that there may be generalities in adaptive molecular evolution that transcend the biological details of a system, but we show that for the model to be useful as a predictive or inferential tool, some adjustments for the biology of the system will be necessary. 相似文献
16.
Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system 总被引:30,自引:0,他引:30
The development of non-viral gene-transfer technologies that can support stable chromosomal integration and persistent gene expression in vivo is desirable. Here we describe the successful use of transposon technology for the nonhomologous insertion of foreign genes into the genomes of adult mammals using naked DNA. We show that the Sleeping Beauty transposase can efficiently insert transposon DNA into the mouse genome in approximately 5-6% of transfected mouse liver cells. Chromosomal transposition resulted in long-term expression (>5 months) of human blood coagulation factor IX at levels that were therapeutic in a mouse model of haemophilia B. Our results establish DNA-mediated transposition as a new genetic tool for mammals, and provide new strategies to improve existing non-viral and viral vectors for human gene therapy applications. 相似文献