首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用水热法,以Co3O4纳米颗粒为前驱体制备空心结构的复合金属氧化物NiCoO4纳米材料.采用XRD、SEM、EDS、TEM等测试手段对所合成的样品进行物相、形貌、组成、结构的表征.表征结果显示,所得NiCo2O4纳米盒单晶形貌统一、颗粒细小,其粒径大小约为20nm,孔径约为6nm.生长机理研究表明离子扩散和交换作用在NiCo2O4纳米盒形成过程中起到了至关重要的作用.  相似文献   

2.
采用简单的水热法在泡沫镍基质上直接制备FeCo_2O_4纳米阵列材料,并通过扫描电镜(SEM)、X-射线衍射(XRD)、X射线光电子能谱(XPS)及热重分析(TGA)等手段对制备材料的形貌、结构、元素组成分布及其热稳定性能进行表征.实验结果表明,制备的FeCo_2O_4具有由纳米片层构成的纳米花阵列结构.在三电极体系及2mol/L H_2SO_4电解质中,该电极材料的比容量达1 190.47 mF·cm~(-2),当电流密度为从1 mA·cm~(-2)增加到50 mA·cm~(-2)时,其倍率性保持61.09%,在30 mA·cm~(-2)电流密度下充放电循环2 000次后其比容量保留率达到111.76%.  相似文献   

3.
超级电容器电极材料纳米α-MnO2的制备及性能研究   总被引:6,自引:1,他引:5  
用溶胶-凝胶法和沉淀法制备了具有纳米结构的α-MnO2,分别对其进行X-射线衍射(XRD),扫描电镜(SEM),循环伏安(CV)等测试,结果发现溶胶-凝胶法所合成的材料是由粒径为60nm的微粒组成,沉淀法所合成的材料粒径在80nm范围,并研究了不同配比的α-MnO2和活性炭组成的复合电极在各种浓度的电解液中的循环伏安性能,发现当电极中α-MnO2质量百分含量为40%-60%时,在0.5mol/L Na2SO4,2.0mol/L(NH4)2SO4,1.0mol/L,KCl溶液中的比电容较高,其中在2.0mol/L(NH4)2SO4溶液中的比电容最高可达108.26F/g.  相似文献   

4.
使用简单的化学沉积法制备出直接生长在泡沫镍上的前驱体Co(OH)2,之后经程序升温得到Co_3O_4超级电容器电极材料.通过X射线衍射、扫描电子显微镜、透射电子显微镜、傅里叶红外吸收光谱和拉曼光谱对制备的电极材料进行了表征,并进行了电化学性能测试.结果表明,生成了前驱体Co(OH)2和Co_3O_4超级电容器电极材料,形貌为由纳米片组成的网状结构.该形貌结构易于电解质渗透和电荷转移,减小了电荷转移电阻,与前驱体Co(OH)2相比,Co_3O_4的电化学性能得到显著提高.在三电极体系下,电流密度为0.75 A/g时,Co_3O_4的比电容达到820.62 F/g,且循环稳定性较好,经过1 000次充放电循环后,比电容仍为初始比电容的95.6%.  相似文献   

5.
电沉积法制备超级电容器电极材料纳米MnO_2   总被引:2,自引:0,他引:2  
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为5.7,浓度为0.16 mol/L MnSO_4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO_2.用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na_2SO_4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析.结果表明:MnO_2的形貌及性能与沉积方法有关,所合成的MnO_2的粒径大约50 nm;用恒电流沉积法制备的样品,在0.3 mol/L的Na_2SO_4溶液中比电容最高,可达306.75 F/g.  相似文献   

6.
采用恒电流、恒电位及循环伏安三种电沉积方法在石墨上从pH为57,浓度为016 mol/L MnSO4水溶液中分别制备了具有纳米结构的超级电容器活性电极材料MnO2用扫描电镜测试了其结晶形貌,用电化学研究了其在不同浓度的Na2SO4溶液中的电容特性,计算了它们的比电容,并对测试结果进行了比较和分析结果表明: MnO2的形貌及性能与沉积方法有关,所合成的MnO2的粒径大约50 nm;用恒电流沉积法制备的样品,在03 mol/L的Na2SO4溶液中比电容最高,可达30675 F/g  相似文献   

7.
电极材料和电解液是超级电容器的两个关键因素.通过液相反应制备了纤维状纳米MnO2,X射线衍射分析表明产物是α-MnO2和γ-MnO2组成的混合晶相.利用循环伏安和恒流充放电测试其电化学性能,在0.15V~O.75V(SCE)工作电压范围内考察了在MgSO4、MnSO4、(NH4)2SO4、Na2SO4溶液中的电容性能,结果表明该电极材料在(NH4)2SO4溶液中电容性能优越,说明(NH4)2SO4溶液为纤维状纳米MnO2电极较适合电解液.讨论了(NH4)2SO4浓度对电极材料电容性能的影响,该电极材料在浓度为1mol·L-1的(NH4)2SO4中具有优异的电容性能;工作电流密度为3mA·cm-2的恒流充放测试中,其比容量可达142.2 F·g-1.  相似文献   

8.
9.
采用冷冻干燥有机气凝胶法制备碳气凝胶,利用沉积法在其表面负载Mn_2O_3制备Mn_2O_3/CRF复合材料,并通过调节沉积时间制得4种不同的Mn2O3/CRF复合材料,并考察了4种复合材料的电化学性能差异.结果表明,沉积时间为10 min的Mn_2O_3/CRF复合材料的比电容最大,且循环伏安曲线矩形的宽度最大,CV曲线覆盖面积最大,比电容高达375 F/g,表现出良好的电化学电容特性.  相似文献   

10.
二元过渡金属硫化物Ni Co2S4是典型的超级电容器电极材料,近年来被深入研究.综述了Ni Co2S4作为超级电容器电极材料的制备方法,以Ni Co2S4为基体制备复合电极材料的相关研究以及Ni Co2S4电极材料的不同形貌对其性能的影响,并对其发展前景进行了展望.  相似文献   

11.
通过一种简便的化学沉积的方法,合成了用于电化学超级电容器的纳米锰氧化物材料.采用扫描电镜(SEM)、透射电镜(TEM)和X-射线衍射(XRD)对材料的形貌及其结构进行了表征.通过循环伏安、恒电流充放电以及电化学交流阻抗等对材料的电化学性能进行了测试,结果为:所制备的材料在6 mol *L-1 KOH 的电解质体系中、在5 mV*s-1的扫描速率下具有266 F*g-1的比容量,对比文献报道值150~250 F*g-1有明显的提高,且材料具有较好的电化学稳定性和较长的循环寿命.  相似文献   

12.
采用简单的水热合成法制备得到了蒲公英状的NiCo2O4电极材料.用扫描电镜(SEM)、透射电镜(TEM)、X衍射测试(XRD)对样品进行了结构表征.并将其组合成超级电容器,通过循环伏安(CV)、恒电流充放电(GCD)等测试手段研究其电化学性能.测试结果表明,空心结构蒲公英状NiCo2O4电极材料,在电流密度为1 A·g-1时,电容量达到1 262.3 F·g-1,高于实心结构时的680.89 F·g-1.在5 A·g-1时,经过2 000次循环测试后,样品的电容量从1 150 F·g-1下降到1 050 F·g-1,电容保持率为91.3%,表明电极的倍率性能十分稳定.  相似文献   

13.
以正硅酸乙酯和金属硝酸盐为原料,采用溶胶-凝胶法制备了(CoFe2O4)x/SiO2(1-x)纳米复合材料.利用热重/差热综合热分析仪(TG/DTA)研究了热处理过程中干凝胶的变化.使用X射线衍射仪(XRD)分析了(CoFe2O4)x/SiO2(1-x)纳米复合粉末的结构和晶粒尺寸.结果表明热处理后的样品中同时存在非晶态SiO2和晶.态CoFe2O4,当x≥0.5时,出现少量的Fe2O3杂相.随着热处理温度的升高,样品的晶粒尺寸逐渐变大.  相似文献   

14.
以水为分散介质,氯金酸为金源,柠檬酸钠为还原剂制备了纳米金粒子,然后将其与表面有氨基修饰的Fe3O4/SiO2磁性纳米粒子进行自组装,制备Au/Fe3O4/SiO2磁性纳米复合粒子.采用X射线衍射仪(XRD)、紫外可见吸收光谱(UV-Vis)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)对样品进行表征.结果表明...  相似文献   

15.
以LiNO3和MnO2为原料采用高温固相法制备了LiMn2O4,通过改变原料配比、反应温度、时间和方式等,由X-射线衍射分析得出使用这两种原料制备尖晶石型LiMn2O4的最佳温度条件、原料配比和焙烧时间.  相似文献   

16.
在不同温度下采用共沉淀法制备Fe3O4纳米粒子,然后经140℃蒸流水中回流处理.通过XRD和DPD(N,N-二乙基-对苯二胺)方法考察了制备温度对Fe3O4纳米粒子的晶相结构、粒子大小,Fe3O4纳米粒子对底物DPD的亲和力以及Fe3O4纳米粒子分解H2O2的催化能力的影响.结果表明,Fe3O4纳米粒子的结晶强度和晶粒大小与制备温度有关,温度高,结晶度增强,粒径小.不同温度下制备的Fe3O4纳米粒子对底物DPD的亲和程度也是不同的,实验验证,DPD作为底物Fe3O4纳米粒子可以催化分解低浓度H2O2.  相似文献   

17.
18.
利用NH_4F辅助水热合成法制备了ZnCo_2O_4纳米线,对ZnCo_2O_4纳米线的晶体结构、形貌和性能进行了测试及分析.  相似文献   

19.
采用溶胶-凝胶法制备CoFe2O4/SiO2纳米复合材料,使用X射线衍射仪和扫描电镜对样品的结构、晶粒尺寸和形貌进行了分析.研究了分散剂乙二醇的用量对样品的影响.  相似文献   

20.
采用传统的粉末冶金技术及真空固相烧结的方法,制备出了Co-Ni-NiFe2O4金属陶瓷惰性阳极材料,通过研究确定了制备NiFe2O4粉体及真空固相烧结Co-Ni-NiFe2O4金属陶瓷的合理工艺.实验表明:Co-Ni-NiFe2O4金属陶瓷在960℃条件下的氧化动力学曲线近似符合抛物线规律,NiFe2O4含量越多,试样的抗氧化性越强;并且在高温氧化后,氧化膜在生长过程中产生明显的择优取向.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号