首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
利用循环伏安法,研究了银和L-苏氨酸在玻碳电极表面电化学聚合的条件,制备了银掺杂聚L-苏氨酸修饰电极。并研究了多巴胺在修饰电极上的电化学行为,建立了测定多巴胺的新方法。在pH=6.5磷酸盐缓冲溶液中,扫描速率为20mV/s,多巴胺在修饰电极上产生一对明显的氧化还原峰,峰电位分别为Epa=0.218V,Epc=0.189V。用示差脉冲伏安法测定时,峰电流与多巴胺浓度分别在8.00×10-7~1.00×10-5和1.00×10-5~1.00×10-4mol/L范围内呈良好的线性关系,检出限为1.0×10-7mol/L。用于药物中多巴胺的测定,结果满意。  相似文献   

2.
用循环伏安法制备聚L-苯丙氨酸修饰玻碳电极,研究尿酸在聚L-苯丙氨酸修饰电极上的电化学行为,建立循环伏安法测定尿酸的新方法.在pH 4.0的磷酸盐缓冲溶液中,尿酸在聚L-苯丙氨酸修饰玻碳电极上出现一氧化峰,峰电位为Epa=+638 mV(相对于Ag/AgCl电极),氧化峰电流与尿酸浓度在5.00×10-7~5.00×10-5 mol/L范围内成线性关系,检测限:1.0×10 -7 mol/L.对1.0×10 -5 mol/L UA溶液平行测20次,其相对标准偏差为3.1%.用于尿液中尿酸的测定,结果满意.  相似文献   

3.
多巴胺在聚L-天冬氨酸修饰电极上的催化氧化及测定   总被引:5,自引:0,他引:5  
研究了聚L_天冬氨酸修饰电极的制备及其电化学性质。实验表明 ,该修饰电极对神经递质多巴胺的电化学氧化有显著的催化作用 ,使电极反应过程的可逆性变好 ,峰电流明显增大。采用差示脉冲伏安法对多巴胺进行定量分析 ,线性范围为 1 0× 10 - 7~ 1 0× 10 - 4 mol L ,检出限为 5 0× 10 - 8mol L。该聚合物修饰电极具有良好的选择性 ,能有效地排除抗坏血酸对测定的影响 ,用于合成样品分析 ,结果令人满意。  相似文献   

4.
采用循环伏安法制备了聚L-苯丙氨酸薄膜修饰玻碳电极,研究了对乙酰氨基酚在该修饰电极上的电化学行为,建立了循环伏安法测定对乙酰氨基酚的新方法.研究发现:在pH 7.0的磷酸盐缓冲溶液中,聚L-苯丙氨修饰电极对对乙酰氨基酚存在灵敏的氧化作用,氧化峰电位负移50 mV.对乙酰氨基酚的浓度在2.0×10-5~2.0×10-4mol.L-1和8.0×10-7~2.0×10-5mol.L-1范围内与其峰电流呈良好的线性关系,检出限为5.0×10-7mol.L-1.对1.0×10-5mol.L-1对乙酰氨基酚平行测定5次,相对标准偏差为1.6%.该法可用于药品中对乙酰氨基酚的测定,结果满意.  相似文献   

5.
采用自组装方法,通过L-半胱氨酸分子中的硫与银基底较强的亲和性,L-半胱氨酸在电极表面吸附并定向排列形成单分子层,得到L-半胱氨酸修饰银电极.循环伏安实验表明银电极表面自组装上L-半胱氨酸后,灵敏度明显提高,在0.2 mol/L HAc-NaAc(pH=5.0)缓冲溶液中研究Sn(Ⅱ)的伏安特性,由于Sn(Ⅱ)与电极表面L-半胱氨酸的吸附富集作用,在-37.5 mV产生一个灵敏的还原峰,其峰电流与Sn(Ⅱ)浓度成线性关系,线性范围为5.0×10-10~1.0×10-6mol/L,检测下限可达1.0×10-10mol/L.测定食品包装塑料中的锡,获得与原子吸收法一致结果.  相似文献   

6.
在不同的酸度、起止电位、扫描圈数、扫描速度条件下,于一定浓度的苯丙氨酸聚合底液中制作玻碳修饰电极,利用浓度为2.2×10-5 mol/L的肾上腺素作为探针进行伏安测定,比较产生响应电流的大小,探讨了聚L-苯丙氨酸的最佳聚合条件.结果表明:Na2HPO4-C6H8O7缓冲溶液pH为5.0,扫描电位区间为-0.8~3.0 V,聚合圈数为8圈,聚合扫速为120 mV/s条件下制得的修饰电极对肾上腺素产生最大响应电流,且该修饰电极因稳定性和重现性良好而具有较高的应用价值.  相似文献   

7.
采用循环伏安法将Ag和L-甲硫氨酸(L-Met)聚合在玻碳电极表面,制得Ag/聚L-甲硫氨酸复合修饰电极(AgPLM/GCE),并对维生素C在此电极上的电化学行为进行研究,建立测定维生素C的新方法。在pH 3.0的磷酸盐缓冲溶液中,扫描速率为220mV/s时,维生素C在修饰电极上,产生一灵敏的氧化峰,峰电位为0.326V(s Ag/AgCl),峰电流与维生素C的浓度在2.00×10-4~3.00×10-2 mol/L范围内呈良好的线性关系,检出限为5.00×10-6 mol/L。用于部分水果蔬菜中维生素C的测定,结果满意。  相似文献   

8.
用电聚合法制备了聚L-谷氨酸修饰玻碳电极,研究了扑热息痛在聚L-谷氨酸修饰电极上的电化学行为,建立了测定扑热息痛的新方法.结果表明,在pH 7.0的磷酸盐缓冲溶液中,利用差分脉冲伏安法测定扑热息痛,在0.1~140μmol/L浓度范围内其浓度与氧化峰电流呈良好的线性关系,相关系数为0.998.信噪比为3时,扑热息痛检出限为0.03μmol/L.将该方法用于扑热息痛药片分析,回收率为95.2%~104.8%.  相似文献   

9.
用循环伏安法制备了聚L-精氨酸修饰玻碳电极,并研究了抗坏血酸在修饰电极上的电化学行为,建立了测定抗坏血酸的新方法.在pH7.5的磷酸盐缓冲溶液中,抗坏血酸在修饰电极上产生一氧化峰,峰电位为0.050V(对AgA/gCl电极).用线性扫描伏安法测定抗坏血酸的线性范围为5.0×10-6~5.0×10-3molL/,检出限为2.0×10-6molL/.用于药物中抗坏血酸的测定,结果满意。  相似文献   

10.
利用循环伏安法(CV)将硫堇电聚合修饰于裸玻碳电极(GCE)表面,制备成聚硫堇薄膜修饰电极(PTHE).利用PTHE对对乙酰氨基酚(PRCT)的电催化作用,建立了对PRCT进行定量分析的电化学分析新方法.在0.02 mol/L(pH=6.86) KH2P04- Na2HP04体系中,PRCT的浓度在8.2×10-6 mol/L~8.2×10-4 mol/L范围内与氧化峰电流呈良好的线性关系,线性回归方程和线性相关系数分别为:iPa((μA)= -1.40×105C(mol/L)-22.85,γ= -0.999 1,检出限为8.2×10-7 mol/L.利用该法对药物样品的有效成分进行定量分析,得到满意结果.6次样品分析结果的相对标准偏差为3.1%,回收率为95.8%~104.4%,完全满足微量分析要求.  相似文献   

11.
MPA包覆的银纳米粒子修饰电极制备和电化学表征   总被引:1,自引:0,他引:1  
运用自组装和电化学组装法,将MPA包裹的银纳米粒子修饰到金电极表面,制备成银纳米粒子单层和多层膜修饰电极. 循环电压-电流和电化学阻抗谱测定结果表明:以MPA包覆的银纳米粒子修饰电极的氧化电位明显负移,显示出银纳米粒子具有更高的活性. 以0.5mmol/L的K3[Fe(CN)6]溶液为检测体系,电化学阻抗谱测试得出电极表面对探针分子的阻碍作用有所增加. 循环电压-电流结果表明:与单层膜修饰电极相比,多层膜修饰电极的峰电流显著增加.  相似文献   

12.
以聚茜素红薄膜修饰电极(PARE)为工作电极,0.05 mol/LHAc-NaAc(pH 5.0)为支持电解质,通过差分脉冲伏安法研究了丹宁酸在修饰电极上的伏安行为.结果表明,当丹宁酸浓度在5.0×10-6~5.0×10-3mol/L范围内,丹宁酸的浓度与氧化峰电流成线性关系,线性方程为i(μA)=0.2768c(10-6mol/L)+2.636,r=0.9966,检出限达1.0×10-7mol/L.方法简便,用于茶叶中丹宁酸的测定,7次测定的RSD%为2.1.  相似文献   

13.
文章利用银掺杂聚L-酪氨酸修饰电极研究多巴胺与Cr(VI)相互作用的电化学行为.结果表明,在多巴胺溶液中加入Cr(VI)后,多巴胺的氧化还原峰电位几乎没有发生变化,且没出现新峰,但峰电流值降低,说明Cr(VI)能与多巴胺发生氧化作用,导致多巴胺浓度降低,且在血液酸度中的电流差值大于胃液酸度中的电流差值.  相似文献   

14.
研制了一种纳米二氧化钛薄膜修饰的金电极(nano-TiO2/Au),用循环伏安法研究了亚硝酸根(NO2)在该电极上的电化学行为,并对实验条件进行了优化.实验结果表明,该电极在酸性介质中(0.1mol/LH2SO4)对NO2的氧化具有高度灵敏性和选择性,且大多数阳离子对NO2的测定无干扰.NO2的氧化峰电流与其浓度在2.0×108~4.0×104mol/L范围内呈良好的线形关系,检测限可达2.0×109mol/L.  相似文献   

15.
聚组氨酸修饰电极测定多巴胺的研究   总被引:2,自引:0,他引:2  
本文研究了多巴胺在聚组氨酸修饰电极上的循环伏安行为.在pH7.0的磷酸盐缓冲溶液中,用线形扫描伏安法测定多巴胺的线性范围为:6.0×10-8~1.0×10-5mol/L,1.5×10-5~1.0×10-3mol/L,检出限为4×10-8mol/L.用于药剂中多巴胺的测定,结果满意.  相似文献   

16.
制备了FeC l3改性蒙脱土修饰电极,采用循环伏安法研究了多巴胺(DA)在该电极上的电化学行为.结果表明,电极过程为扩散控制的准可逆过程,其氧化峰电流与浓度在1.0×10^-5-4.0×10^-3mol·L^-1范围内呈良好的线性关系,其线性回归方程为:Ipa(A)=-3.288 04×10^-6-0.035 99 C(mol·L^-1),相关系数R为0.997 6,检测限可达2.88×10^-6mol·L^-1,回收率在95.4%-103.1%之间,为DA的测定建立了一种电化学方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号