共查询到19条相似文献,搜索用时 62 毫秒
1.
多目标跟踪中的数据关联算法 总被引:5,自引:0,他引:5
在目标的正确回落入其跟踪门内的概率PtG <1的情况下 ,推导了联合概率数据关联算法中联合事件发生概率的计算公式。提出了一种能容易地产生多目标和多回波的联合事件的方法———假设树方法。并且提出了一种新的多目标跟踪中数据关联的快速算法。此算法用于解决杂波环境中多目标跟踪的数据关联问题 ,取得了较好的结果。 相似文献
2.
基于幅值信息的联合概率数据关联粒子滤波算法 总被引:2,自引:0,他引:2
针对非线性非高斯环境下多目标被动跟踪的低可观测问题,将粒子滤波、联合概率数据关联和量测的幅值信息相结合,提出了一种基于幅值信息的联合概率数据关联粒子滤波算法。将联合概率数据关联算法中的关联似然与幅值似然比相结合,利用粒子滤波算法进行跟踪滤波,用幅值量测来改善低可观测条件下的目标跟踪性能。仿真结果表明,该算法提高了数据关联的可靠性和目标跟踪的精度。 相似文献
3.
4.
针对杂波环境下的多目标跟踪,概率假设密度(probability hypothesis density, PHD)滤波不能提供目标航迹信息的问题,提出一种基于PHD滤波和数据关联的多目标跟踪方法。利用PHD滤波消除杂波并得到各个时刻的目标个数和目标状态估计。将PHD滤波的结果重新定义为量测数据,通过数据关联进一步消除虚警和漏警并给出目标航迹。仿真结果表明,该算法可以在有效地提高杂波环境下多目标跟踪精度的同时提供各目标航迹信息。 相似文献
5.
一种改进的多传感器多目标跟踪联合概率数据关联算法研究 总被引:1,自引:0,他引:1
联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器多目标跟踪的情况,特别是目标较为密集时,计算量剧增,会出现计算组合爆炸现象。因此,提出了一种改进算法,即对多传感器多目标量测进行同源划分,将多传感器对多目标的跟踪问题简化为单传感器对多目标的跟踪问题,然后将JPDA当作一种组合优化问题,采用连续型Hopfield神经网络求解关联概率。经仿真研究表明,该方法不仅克服了JPDA算法在多传感器多目标跟踪问题中的缺陷,还提高了跟踪精度。 相似文献
6.
7.
针对势平衡多目标多贝努利(cardinality balanced multi target multi Bernoulli, CBMeMBer)滤波中的量测信息弱化问题,提出一种改进的多目标多贝努利(improved multi target multi Bernoulli, IMeMBer)滤波。该算法通过对漏检目标的多贝努利随机集进行修正,在解决目标数过估问题的同时,避免了CBMeMBer滤波中的量测信息弱化问题。在此基础上,将高斯粒子滤波引入IMeMBer算法中,通过一组高斯粒子近似多贝努利随机集中元素的概率分布,实现被动测角情况下的多目标跟踪。仿真结果表明,所提算法能够以较小的运算代价达到高斯混合粒子劳势估计的概率假设密度滤波相似的跟踪精度,具有良好的工程应用前景。 相似文献
8.
基于无迹粒子PHD滤波的序贯融合算法 总被引:1,自引:0,他引:1
针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter, P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle PHDF, UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter, UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。 相似文献
9.
10.
元启发式数据关联的多目标跟踪方法 总被引:1,自引:0,他引:1
提出了一种元启发式数据关联的多目标跟踪方法。首先,该方法根据跟踪门逻辑确定目标的有效量测。然后,利用滤波信息的似然函数描述量测点与目标之间的关联关系,并建立约束条件下多目标数据关联模型。最后,对蚁群优化算法进行改进设计,引入量测剔除策略,将求解问题转化为无约束的组合优化形式,从而利用蚁群优化算法在离散空间的启发式机制搜索量测与目标的最佳关联。仿真结果表明,该方法可以有效实现多目标数据关联且计算量较小,具有一定的工程实用价值。 相似文献
11.
论述了目标跟踪的原理和数据融合技术,为了解决移动机器人系统中的传感器存在大量不确定性问题,提出了一种交叉传感器交叉特征(CSCM)数据融合算法,这种算法基于粒子滤波技术,融合多个传感器的信息,合并不同的状态空间模型,以此减弱系统和测量噪声,来估计移动机器人的位置和角度.在仿真实验中,我们分别比较了单一传感器和多传感器数据融合的不同情况,结果表明了这种算法的有效性,并展现了良好的跟踪性能. 相似文献
12.
针对在使用雷达跟踪目标应用中,目标运动模型通常线性地建模在直角坐标系内,而量测数据由传感器获得的实际情况,提出了基于量测转换方法的概率数据关联算法。推导了该算法中相关的滤波估计、滤波误差协方差和数据关联概率,并且提出了跟踪门的确定方法。仿真结果表明了新算法的可行性和有效性。 相似文献
13.
14.
15.
16.
17.
18.
密集杂波环境下的快速数据关联算法 总被引:7,自引:2,他引:7
联合概率数据关联(JointProbabilisticDataAssociation,JPDA)是密集杂波环境下跟踪多目标最有效的算法之一。但当目标数目和有效量测数增大时,关联概率的计算出现组合爆炸现象一直是工程应用的瓶颈。基于JPDA算法的思想,提出了一种快速数据关联算法,该方法首先根据被跟踪目标相关门的相交情况将监视区域分成相互独立的空间,对同一空间内具有公共量测的目标和各目标相关门内的多个量测的概率密度值分别进行概率加权后再计算关联概率。不需要象最优JPDA算法中产生所有可能的联合事件,因此具有计算量小,易于工程实现的优点。仿真结果表明,在不同的杂波密度环境下和不同的目标运动形式下,此算法都可以取得令人满意的跟踪效果。 相似文献
19.
基于转换测量卡尔曼滤波算法的目标跟踪研究 总被引:1,自引:0,他引:1
在去偏转换测量中,先以目标的真实位置为条件求出真实的偏差和协方差阵,然后以传感器的测量为条件对真实偏差和协方差求取期望,这种方法求得的转换测量的偏差和协方差阵会引入附加的误差,因而不够精确。针对这种情况,直接以传感器的测量为条件求取转换测量的偏差和协方差阵,这种方法不仅精确而且简单。仿真结果表明算法的有效性。 相似文献