首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
多目标跟踪中的数据关联算法   总被引:5,自引:0,他引:5  
在目标的正确回落入其跟踪门内的概率PtG <1的情况下 ,推导了联合概率数据关联算法中联合事件发生概率的计算公式。提出了一种能容易地产生多目标和多回波的联合事件的方法———假设树方法。并且提出了一种新的多目标跟踪中数据关联的快速算法。此算法用于解决杂波环境中多目标跟踪的数据关联问题 ,取得了较好的结果。  相似文献   

2.
基于幅值信息的联合概率数据关联粒子滤波算法   总被引:2,自引:0,他引:2  
针对非线性非高斯环境下多目标被动跟踪的低可观测问题,将粒子滤波、联合概率数据关联和量测的幅值信息相结合,提出了一种基于幅值信息的联合概率数据关联粒子滤波算法。将联合概率数据关联算法中的关联似然与幅值似然比相结合,利用粒子滤波算法进行跟踪滤波,用幅值量测来改善低可观测条件下的目标跟踪性能。仿真结果表明,该算法提高了数据关联的可靠性和目标跟踪的精度。  相似文献   

3.
针对粒子概率假设密度滤波(P-PHDF)算法估计精度低、滤波发散和粒子退化的缺陷,提出了一种无迹粒子PHD滤波(UP-PHDF)算法.该算法以UKF算法产生重要性函数并从中采样通过观测值更新粒子的权值,再用加权的粒子估计PHD函数,进而得到优化的状态估计均值和方差进行传播最后,对UP-PHDF算法进行了分析和实现,并将该算法和P-PHDF算法进行了比较.仿真结果表明,UP-PHDF算法不仅大大提高了滤波估计的精度,同时提高了跟踪系统的稳定性和鲁棒性.  相似文献   

4.
针对杂波环境下的多目标跟踪,概率假设密度(probability hypothesis density, PHD)滤波不能提供目标航迹信息的问题,提出一种基于PHD滤波和数据关联的多目标跟踪方法。利用PHD滤波消除杂波并得到各个时刻的目标个数和目标状态估计。将PHD滤波的结果重新定义为量测数据,通过数据关联进一步消除虚警和漏警并给出目标航迹。仿真结果表明,该算法可以在有效地提高杂波环境下多目标跟踪精度的同时提供各目标航迹信息。  相似文献   

5.
耿峰  祝小平 《系统仿真学报》2007,19(20):4671-4675
联合概率数据关联(JPDA)算法对单传感器多目标跟踪是一种良好的算法,但对于多传感器多目标跟踪的情况,特别是目标较为密集时,计算量剧增,会出现计算组合爆炸现象。因此,提出了一种改进算法,即对多传感器多目标量测进行同源划分,将多传感器对多目标的跟踪问题简化为单传感器对多目标的跟踪问题,然后将JPDA当作一种组合优化问题,采用连续型Hopfield神经网络求解关联概率。经仿真研究表明,该方法不仅克服了JPDA算法在多传感器多目标跟踪问题中的缺陷,还提高了跟踪精度。  相似文献   

6.
一种基于粒子滤波的被动多传感器多目标跟踪算法   总被引:1,自引:0,他引:1  
针对被动观测系统中非线性运动多目标跟踪问题,提出了一种基于交叉定位的模糊-概率双加权粒子滤波跟踪算法.算法利用多个被动传感器的角度观测信息进行交叉定位,得到目标的位置观测信息,通过模糊-概率双加权完成目标与定位点的关联匹配,最后利用粒子滤波对非线性运动的目标进行跟踪;其中关联算法和滤波算法的有效结合是该算法的创新点.仿真结果表明,所提出的算法可以准确地排除虚假定位点,可有效跟踪多个非线性运动目标.  相似文献   

7.
针对势平衡多目标多贝努利(cardinality balanced multi target multi Bernoulli, CBMeMBer)滤波中的量测信息弱化问题,提出一种改进的多目标多贝努利(improved multi target multi Bernoulli, IMeMBer)滤波。该算法通过对漏检目标的多贝努利随机集进行修正,在解决目标数过估问题的同时,避免了CBMeMBer滤波中的量测信息弱化问题。在此基础上,将高斯粒子滤波引入IMeMBer算法中,通过一组高斯粒子近似多贝努利随机集中元素的概率分布,实现被动测角情况下的多目标跟踪。仿真结果表明,所提算法能够以较小的运算代价达到高斯混合粒子劳势估计的概率假设密度滤波相似的跟踪精度,具有良好的工程应用前景。  相似文献   

8.
基于无迹粒子PHD滤波的序贯融合算法   总被引:1,自引:0,他引:1  
针对在杂波、漏检和非线性情况下,粒子概率假设密度滤波(particle probability hypothesis density filter, P-PHDF)算法估计精度不高、滤波发散及粒子退化等问题,提出了一种基于无迹粒子概率假设密度滤波(unscented particle PHDF, UP-PHDF)的序贯融合算法。利用无迹粒子滤波(unscented particle filter, UPF)实现PHDF,由UKF算法得到更好更优的重要性密度函数并从中采样,使粒子的分布更接近多目标概率假设密度分布;另外,为进一步提高滤波算法的性能,实现基于雷达和红外传感器的UP-PHDF序贯融合算法,通过两传感器交替滤波保证目标状态的可观测性。在复杂环境下,仿真结果表明该算法的估计精度和稳定性明显优于单传感器P-PHDF算法。  相似文献   

9.
基于无迹变换的概率假设密度滤波算法   总被引:1,自引:0,他引:1  
基于有限集统计理论的概率假设密度滤波算法运用于多目标跟踪时,不再考虑数据关联问题,突破了传统的跟踪方法.但该滤波公式在非线性条件下没有解析解,在非线性高斯条件下提出了基于无迹变换的概率假设密度滤波算法,实现了算法在强杂波环境下的多目标跟踪.仿真实验比较了该算法与基于粒子滤波的概率假设密度滤波算法的跟踪性能,验证了该算法的跟踪性能和精度.同时分析指出了此算法的不足,以及结合无迹变换与粒子滤波的概率假设密度滤波算法的改进研究方向.  相似文献   

10.
元启发式数据关联的多目标跟踪方法   总被引:1,自引:0,他引:1  
提出了一种元启发式数据关联的多目标跟踪方法。首先,该方法根据跟踪门逻辑确定目标的有效量测。然后,利用滤波信息的似然函数描述量测点与目标之间的关联关系,并建立约束条件下多目标数据关联模型。最后,对蚁群优化算法进行改进设计,引入量测剔除策略,将求解问题转化为无约束的组合优化形式,从而利用蚁群优化算法在离散空间的启发式机制搜索量测与目标的最佳关联。仿真结果表明,该方法可以有效实现多目标数据关联且计算量较小,具有一定的工程实用价值。  相似文献   

11.
论述了目标跟踪的原理和数据融合技术,为了解决移动机器人系统中的传感器存在大量不确定性问题,提出了一种交叉传感器交叉特征(CSCM)数据融合算法,这种算法基于粒子滤波技术,融合多个传感器的信息,合并不同的状态空间模型,以此减弱系统和测量噪声,来估计移动机器人的位置和角度.在仿真实验中,我们分别比较了单一传感器和多传感器数据融合的不同情况,结果表明了这种算法的有效性,并展现了良好的跟踪性能.  相似文献   

12.
王炜  李丹 《系统仿真学报》2006,18(3):565-569
针对在使用雷达跟踪目标应用中,目标运动模型通常线性地建模在直角坐标系内,而量测数据由传感器获得的实际情况,提出了基于量测转换方法的概率数据关联算法。推导了该算法中相关的滤波估计、滤波误差协方差和数据关联概率,并且提出了跟踪门的确定方法。仿真结果表明了新算法的可行性和有效性。  相似文献   

13.
提出一种基于色彩相关直方图的粒子滤波跟踪算法.该算法在粒子滤波基本框架之下,将目标色彩自相关直方图作为目标的描述特征,用于衡量不同预测状态与观测状态之间的色彩相关性.色彩相关直方图将色彩的空间相关性信息引入到目标的特征表达当中,弥补了一般色彩直方图的不足.试验表明,该算法不仅能在目标与背景颜色相近的情况下准确的跟踪到目标,而且能在目标发生旋转和部分遮挡的情况下也能保证不丢失目标.  相似文献   

14.
薛锋  刘忠  张晓锐 《系统仿真学报》2006,18(Z2):900-902
为提高被动跟踪性能,提出了一种高斯和粒子滤波方法。在建立目标被动跟踪模型的基础上,使用高斯和滤波(GSF)近似目标状态的后验密度,利用粒子滤波方法处理GSF中的均值和方差计算问题,推导了高斯和粒子滤波器(GSPF)应用的具体算法步骤,使用机动目标被动跟踪仿真实例,与其它滤波器进行了仿真对比,分析了跟踪性能和RMSE误差。仿真结果表明,对于机动目标被动跟踪问题,GSPF不仅具有较高的跟踪精度,而且与一般粒子滤波器相比,GSPF具有较好的跟踪稳定性和较低的计算量。  相似文献   

15.
基于粒子滤波的机器人定位及动态目标跟踪   总被引:3,自引:0,他引:3  
赵璇  何波  吉德志  于青  张洁 《系统仿真学报》2008,20(23):6490-6493,6497
提出了一种基于粒子滤波的动态跟踪算法,解决了传统SLAM理论在处理动态目标时误差不断累加的问题。通过分析移动机器人和激光测距仪,里程计的原理,建立了机器人的运动和观测模型。将数据关联的方法用于动态环境中则提高了系统的稳定性和定位的精度。仿真结果表明此算法能够比较精确地估计出机器人的位姿以及动态目标在地图中的位置,为开展将静态与动态相结合的定位与地图构建的研究提供了一种可行方案。  相似文献   

16.
在视频目标跟踪中把视频象素点的色彩值(RGB值)作为跟踪系统的观测量,用无迹粒子滤波算法估计活动目标在每一帧视频画面中的位置.在粒子滤波的重要性采样步骤中以色彩相似度作为更新粒子权值的标准.采用一种判断是否需要进行重采样的方法.在MATLAB环境下仿真时采取调用预先编译得到的DLL文件的方式减少仿真时间.实验结果表明,取300个粒子时,能以每秒24帧的速率跟踪随机运动的视频目标.  相似文献   

17.
实时粒子滤波跟踪算法及其实现   总被引:2,自引:0,他引:2  
针对粒子滤波跟踪算法在视频跟踪中存在的计算复杂、计算量庞大,无法满足实时系统的应用需求,提出了实时粒子滤波跟踪算法.利用粒子滤波器潜在的数据并发特征,在集群环境下,设计并实现了分布式并行粒子滤波跟踪算法,给出了主从模式下的算法设计、数据划分、负载平衡及通信策略.实验结果表明,随着粒子数增加,计算量以幂指数增大,并行跟踪算法的执行时间明显减少,有效地提高了跟踪精度、降低计算时间,能够满足硬实时系统的时间约束.  相似文献   

18.
密集杂波环境下的快速数据关联算法   总被引:7,自引:2,他引:7  
联合概率数据关联(JointProbabilisticDataAssociation,JPDA)是密集杂波环境下跟踪多目标最有效的算法之一。但当目标数目和有效量测数增大时,关联概率的计算出现组合爆炸现象一直是工程应用的瓶颈。基于JPDA算法的思想,提出了一种快速数据关联算法,该方法首先根据被跟踪目标相关门的相交情况将监视区域分成相互独立的空间,对同一空间内具有公共量测的目标和各目标相关门内的多个量测的概率密度值分别进行概率加权后再计算关联概率。不需要象最优JPDA算法中产生所有可能的联合事件,因此具有计算量小,易于工程实现的优点。仿真结果表明,在不同的杂波密度环境下和不同的目标运动形式下,此算法都可以取得令人满意的跟踪效果。  相似文献   

19.
基于转换测量卡尔曼滤波算法的目标跟踪研究   总被引:1,自引:0,他引:1  
周红波  耿伯英 《系统仿真学报》2008,20(3):682-684,688
在去偏转换测量中,先以目标的真实位置为条件求出真实的偏差和协方差阵,然后以传感器的测量为条件对真实偏差和协方差求取期望,这种方法求得的转换测量的偏差和协方差阵会引入附加的误差,因而不够精确。针对这种情况,直接以传感器的测量为条件求取转换测量的偏差和协方差阵,这种方法不仅精确而且简单。仿真结果表明算法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号