首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
The plasma transport between the plasmasphere and the ionosphere in response to the interplanetary conditions is still not fully understood until now.Simultaneous observations of the plasmasphere and ionosphere from the newly developed Chinese Meridian Project provide a new opportunity for understanding the characteristic of the plasma transport and the coupling mechanism between these two regions.We investigate the response of the plasmasphere(L≈2)and ionosphere to the solar wind dynamic pressure pulse during geomagnetically quiet period of 21–27 March 2011.The response of the plasmasphere shows a significant depletion.The plasmaspheric density nearly decreases by half in response to the solar wind dynamic pressure pulse,and subsequently recovers to the original level in 1–2 d.Meanwhile,the maximum electron density of the ionospheric F2 layer(NmF2)and the total electron content(TEC)increase by 13%and 21%,respectively,and then gradually recover,which is opposite to the behavior during magnetic storms.Preliminary analysis shows that the plasmaspheric depletion may be mainly caused by the southward interplanetary magnetic field and changing dawn-dusk electric field.The plasmaspheric density variations seem to be controlled by both the IMF and ionospheric conditions.  相似文献   

2.
3.
Lockwood M 《Nature》2001,409(6821):677, 679
  相似文献   

4.
5.
A transition between the supersonic solar wind and the subsonic heliosheath was observed by Voyager 1, but the expected termination shock was not seen owing to a gap in the telemetry. Here we report observations of the magnetic field structure and dynamics of the termination shock, made by Voyager 2 on 31 August-1 September 2007 at a distance of 83.7 au from the Sun (1 au is the Earth-Sun distance). A single crossing of the shock was expected, with a boundary that was stable on a timescale of several days. But the data reveal a complex, rippled, quasi-perpendicular supercritical magnetohydrodynamic shock of moderate strength undergoing reformation on a scale of a few hours. The observed structure suggests the importance of ionized interstellar atoms ('pickup protons') at the shock.  相似文献   

6.
Radio emissions from Jupiter provided the first evidence that this giant planet has a strong magnetic field and a large magnetosphere. Jupiter also has polar aurorae, which are similar in many respects to Earth's aurorae. The radio emissions are believed to be generated along the high-latitude magnetic field lines by the same electrons that produce the aurorae, and both the radio emission in the hectometric frequency range and the aurorae vary considerably. The origin of the variability, however, has been poorly understood. Here we report simultaneous observations using the Cassini and Galileo spacecraft of hectometric radio emissions and extreme ultraviolet auroral emissions from Jupiter. Our results show that both of these emissions are triggered by interplanetary shocks propagating outward from the Sun. When such a shock arrives at Jupiter, it seems to cause a major compression and reconfiguration of the magnetosphere, which produces strong electric fields and therefore electron acceleration along the auroral field lines, similar to the processes that occur during geomagnetic storms at the Earth.  相似文献   

7.
Broad regions on both sides of the solar wind termination shock are populated by high intensities of non-thermal ions and electrons. The pre-shock particles in the solar wind have been measured by the spacecraft Voyager 1 (refs 1-5) and Voyager 2 (refs 3, 6). The post-shock particles in the heliosheath have also been measured by Voyager 1 (refs 3-5). It was not clear, however, what effect these particles might have on the physics of the shock transition until Voyager 2 crossed the shock on 31 August-1 September 2007 (refs 7-9). Unlike Voyager 1, Voyager 2 is making plasma measurements. Data from the plasma and magnetic field instruments on Voyager 2 indicate that non-thermal ion distributions probably have key roles in mediating dynamical processes at the termination shock and in the heliosheath. Here we report that intensities of low-energy ions measured by Voyager 2 produce non-thermal partial ion pressures in the heliosheath that are comparable to (or exceed) both the thermal plasma pressures and the scalar magnetic field pressures. We conclude that these ions are the >0.028 MeV portion of the non-thermal ion distribution that determines the termination shock structure and the acceleration of which extracts a large fraction of bulk-flow kinetic energy from the incident solar wind.  相似文献   

8.
Gurnett DA  Kurth WS 《Nature》2008,454(7200):78-80
Plasma waves are a characteristic feature of shocks in plasmas, and are produced by non-thermal particle distributions that develop in the shock transition layer. The electric fields of these waves have a key role in dissipating energy in the shock and driving the particle distributions back towards thermal equilibrium. Here we report the detection of intense plasma-wave electric fields at the solar wind termination shock. The observations were obtained from the plasma-wave instrument on the Voyager 2 spacecraft. The first evidence of the approach to the shock was the detection of upstream electron plasma oscillations on 1 August 2007 at a heliocentric radial distance of 83.4 au (1 au is the Earth-Sun distance). These narrowband oscillations continued intermittently for about a month until, starting on 31 August 2007 and ending on 1 September 2007, a series of intense bursts of broadband electrostatic waves signalled a series of crossings of the termination shock at a heliocentric radial distance of 83.7 au. The spectrum of these waves is quantitatively similar to those observed at bow shocks upstream of Jupiter, Saturn, Uranus and Neptune.  相似文献   

9.
The periodic solar activities strongly affect the ioniza-tion of the ionosphere. Sudden enhancements in soft and hard solar X-ray and EUV radiation during solar flare can produce an immediate increase in ionospheric ionization in various degrees at different heights; altogether, they are called sudden ionospheric disturbances (SIDs), which are generally recorded as sudden increase of total electron content (SITEC), the short wave fadeout (SWF), sudden frequency deviation (SFD), sudden ph…  相似文献   

10.
This work detects multi-scale, from hour to seconds, pressure-balanced structures (PBSs) in the solar wind based on the anti- correlation between the plasma thermal pressure and the magnetic pressure measured by WIND at 1 AU on April 5th, 2001. In our former research based on Cluster measurements, we showed the anti-correlation between the electron density and the magnetic field strength in multi-scales, and we supposed these structures may be pressure-balanced structures. Thus, in this work we aim to prove our speculation by the direct evidence on pressure measurements. Different from our previous work, we apply the WIND measurements this time, for they have both the magnetic pressure and the plasma pressure which Cluster could not offer. We use the wavelet cross-coherence method to analyze the correlation between the plasma pressure (P th ) and the magnetic pressure (P B ), and also the electron density (N e ) and the magnetic field strength (B) on various scales. We observe the anti-correlation between P th and P B distributed at different temporal scales ranging from 1000 s down to 10 s. This result directly indicates the existence of pressure- balanced structures (PBSs) with different sizes in the solar wind. Further, We compare the wavelet cross correlation spectrum of P th -P B and N e -B. We notice that the two spectra are similar in general. Thus this result confirms that the relation between P th -P B and N e -B are consistent with each other in the PBSs we study. Moreover, we compare the power spectrum density (PSD) of relative N e fluctuation with our previous work based on Cluster measurements. The two spectra show similar trend with Komolgorov’s -5/3 as their slopes. This may imply the similarity of the structures observed by both WIND and Cluster spacecrafts. Finally, we discuss the possible formation mechanisms for these multi-scale pressure-balanced structures. Our result is important to support the existence of multi-scale PBSs from one-hour scale down to one-minute, and is helpful to understand the role of compressive fluctuation in the solar wind turbulence dominated by Alfvénic cascading.  相似文献   

11.
The solar wind blows outward from the Sun and forms a bubble of solar material in the interstellar medium. The termination shock occurs where the solar wind changes from being supersonic (with respect to the surrounding interstellar medium) to being subsonic. The shock was crossed by Voyager 1 at a heliocentric radius of 94 au (1 au is the Earth-Sun distance) in December 2004 (refs 1-3). The Voyager 2 plasma experiment observed a decrease in solar wind speed commencing on about 9 June 2007, which culminated in several crossings of the termination shock between 30 August and 1 September 2007 (refs 4-7). Since then, Voyager 2 has remained in the heliosheath, the region of shocked solar wind. Here we report observations of plasma at and near the termination shock and in the heliosheath. The heliosphere is asymmetric, pushed inward in the Voyager 2 direction relative to the Voyager 1 direction. The termination shock is a weak, quasi-perpendicular shock that heats the thermal plasma very little. An unexpected finding is that the flow is still supersonic with respect to the thermal ions downstream of the termination shock. Most of the solar wind energy is transferred to the pickup ions or other energetic particles both upstream of and at the termination shock.  相似文献   

12.
Zarka P  Lamy L  Cecconi B  Prangé R  Rucker HO 《Nature》2007,450(7167):265-267
The internal rotation rates of the giant planets can be estimated by cloud motions, but such an approach is not very precise because absolute wind speeds are not known a priori and depend on latitude: periodicities in the radio emissions, thought to be tied to the internal planetary magnetic field, are used instead. Saturn, despite an apparently axisymmetric magnetic field, emits kilometre-wavelength (radio) photons from auroral sources. This emission is modulated at a period initially identified as 10 h 39 min 24 +/- 7 s, and this has been adopted as Saturn's rotation period. Subsequent observations, however, revealed that this period varies by +/-6 min on a timescale of several months to years. Here we report that the kilometric radiation period varies systematically by +/-1% with a characteristic timescale of 20-30 days. Here we show that these fluctuations are correlated with solar wind speed at Saturn, meaning that Saturn's radio clock is controlled, at least in part, by conditions external to the planet's magnetosphere. No correlation is found with the solar wind density, dynamic pressure or magnetic field; the solar wind speed therefore has a special function. We also show that the long-term fluctuations are simply an average of the short-term ones, and therefore the long-term variations are probably also driven by changes in the solar wind.  相似文献   

13.
A 1D-HD shock propagation model is established to predict the arrival time of interplanetary shocks at 1 AU. Applying this model to 68 solar events during the period of February 1997 to October 2000, it is found that our model could be practically equivalent to the STOA, ISPM and HAFv.2 models in forecasting the shock arrival time. The absolute error in the transit time from our model is not larger than those of the other three models for the same sample events. Also, the prediction test shows that the rela...  相似文献   

14.
Ulysses has been the first spacecraft to explore the high latitudinal regions of the heliosphere till now. During its first rapid pole-to-pole transit from September 1994 to June 1995, Ulysses observed a fast speed flow with magnitude reaching 700—800 km/s at high latitudinal region except 20°area near the ecliptic plane where the velocity is 300—400 km/s. The observations also showed a sudden jump of the velocity across the two regions. In this note, based on the characteristic and representative observations of the solar magnetic field and K-coronal polarized brightness, the large-scale solar wind structure mentioned above is reproduced by using a three-dimensional MHD model. The numerical results are basically consistent with those of Ulysses observations. Our results also show that the distributions of magnetic field and plasma number density on the solar source surface play an important role in governing this structure. Furthermore, the three-dimensional MHD model used here has a robust ability to simulate this kind of large-scale wind structure.  相似文献   

15.
16.
链霉菌(Streptomyces sp.2)与金黄色葡萄球苏,枯草杆菌之间有相互抑制作用,链霉菌对大肠杆菌有抑制作用,但大肠杆菌则对链霉菌无抑制作用,细菌的存在能诱导链霉菌提前产生可溶性紫色色素,Streptomyces sp.2在5度下,YM,YG,YA培养基上产生细胞自溶的最短培养时间为2天,全部细胞自溶需要5天,在37度下及培养基上全部自溶的时间为8天,Streptomyces SP.1在55度或37度,培养基上细胞全部自溶的时间超过14天,Streptomyces SP.2孢子萌发的时间为4小时左右,产生的菌丝有分节现象,其细小分枝产生在菌丝及孢子的任何部位,低浓度(4mg/L)氨苄青霉素对链霉菌的孢子萌发及生长无影响,链霉菌菌丝在生长延伸时表现出相互靠扰和吸引,形成网络结构,各细胞间相互直辖市,形成一定形状,大小的菌落,在菌落的特定部位产生孢子,表现出一定的社会性。  相似文献   

17.
热光伏技术是将太阳光辐射出的能量,通过热光伏电池直接转换成电能的技术.由于它可广泛使用热源和具有较高能量输出密度等优点,因此在未来的光伏领域具有很大的发展潜力.本文首先介绍了热光伏系统的工作原理,然后重点评述了Si热光伏电池、Ge热光伏电池、Ⅲ-Ⅴ族化合物热光伏电池、量子阱热光伏电池和中间带热光伏电池的研究进展,并指出了目前热光伏电池发展所面临的一些问题.  相似文献   

18.
A J Hargreaves  F Wandosell  J Avila 《Nature》1986,323(6091):827-828
Tubulin, the main component of intracellular microtubules, is also a major protein in subcellular membrane preparations and can interact with biological and artificial membranes in vitro. Of particular interest is the association of tubulin with postsynaptic junctional lattices enriched in a polypeptide of relative molecular mass (Mr) 50,000 (50K), recently identified as the major subunit of the calmodulin-dependent protein kinase. Phosphorylation of tubulin with a calmodulin-dependent protein kinase similar to that found in postsynaptic densities inhibits its ability to self-assemble into microtubules in a reversible fashion. This involves the phosphorylation of residues in its 4K carboxy-terminal region, a domain that seems to regulate its self-assembly. The results presented here suggest that the phosphorylation of tubulin with this kinase enhances its ability to interact with membranes. This effect is reversible.  相似文献   

19.
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.  相似文献   

20.
给出了一种完全基于CMOS工艺的热风速传感器及其封装的结构、工作原理以及测试结果.该传感器由加热元件和测温元件构成,多晶硅加热电阻元件产生一定的温度分布,CMOS纵向衬底晶体管实现由风速导致的温度变化的测量.传感器的封装采用导热胶在背面贴陶瓷的方式进行.该传感器采用恒温差工作模式,风速测量采用热损失型原理,测试电路是由仪器放大器组成的控制和测试系统.经过风洞测试,风速的测量可以达到30 m/s,风速分辨率达到0.5 m/s.传感器的功耗最大值小于100 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号