首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
水平井多段分级压裂是目前开发致密气藏最有效的方式之一,通过对水平井非稳态产能模型的研究可以有效预测压裂水平井的产能特征及确定各因素对产能的影响。将致密火山岩储层多级压裂水平井的渗流划分为3 个阶段,考虑不同区域不同渗流阶段的渗流特征和机理,建立了基质–裂缝、裂缝–近井筒和裂缝–井筒的耦合流动方程。以椭圆形渗流理论和多井干扰下的叠加原理为基础,通过保角变换、当量井径原理,建立了多级裂缝相互干扰下的压裂水平井非稳态产能预测模型,运用于实际并进行了各参数的敏感性分析。实例计算表明,致密火山岩气藏压裂水平井生产初期产量高,产气量随着时间逐渐降低。初期产量高、递减较快,后期产量低、递减较慢、产量趋于平缓。通过对启动压力梯度、敏感系数、滑脱因子等因素进行敏感性分析可知,各个影响因素均存在一个最佳取值范围。  相似文献   

2.
气藏压裂水平井产能预测新方法   总被引:11,自引:0,他引:11  
根据流体力学理论和动量定理,结合气体的性质和实际气体的状态方程,建立了气藏压裂水平井地层渗流和水平井筒管流耦合的计算模型,并给出了模型的求解方法。运用该模型对长庆油田低渗气藏进行了实际计算,同时分析了井筒半径、水平段长度、裂缝条数以及管壁粗糙度等参数对井筒压力损失和压裂水平气井产能的影响。计算结果表明,水平井筒内的压力损失对压裂水平井的生产动态有一定的影响;水平井内每条压裂缝的产量并不相等,端部裂缝的产气量高于中部裂缝的产气量;水平井筒内的压力呈不均匀分布,从指端到根端压力逐渐降低。  相似文献   

3.
致密气藏储层致密,开采难度较大,应用分段压裂水平井技术可以更高效的开采致密气藏,如何准确预测水平井分段压裂井的产能也成为气藏实际生产开发的关注重点。本文通过对前人致密气藏分段压裂水平井解析模型的探究确定影响产能因素;运用灰色关联分析法可视化分析影响压裂水平井无阻流量的主要因素;选取不同输入层个数影响因素利用python编程程序建立神经网络模型,对比选取高精度的训练模型结构;利用训练好的神经网络模型对实际气田待压裂井进行产能预测。结果表明,利用神经网络模型建立的压裂水平井产能预测方法具有误差小、简便高效的优点,对实际气田生产开发制度有一定指导意义。  相似文献   

4.
致密油储集层致密,孔隙结构复杂,孔隙度小,渗透率低,储集层微裂缝发育,采用体积压裂后形成复杂缝网系统,水平井单井产量大幅提高。目前的水平井产能公式很难适应于体积压裂水平井产能的预测。以鄂尔多斯盆地长7致密油为例,利用体积压裂水平井与直线无限井排直井的相似性,忽略了水平井筒内流体阻力的影响,将各条压裂缝之间的干扰问题转化为直线无限井排直井之间的干扰问题,依据势的叠加原理,推导出体积压裂水平井稳态产能公式。在推导过程中,考虑了储层的有效厚度、压裂改造后油藏等效渗透率、流体的黏度、水平井水平段长度、压裂段数、压裂段间距和井底流压等因素对水平井产能的影响,使水平井产能计算结果更加合理和符合实际。利用所推导的计算公式,结合鄂尔多斯盆地长7致密油特征,分析了影响水平井产能的几个重要因素,得出了水平井最佳压裂段间距和合理流压,其结果对致密油体积压裂水平井的设计具有一定的指导意义。  相似文献   

5.
多级压裂水平井(MFHW)能大幅度提高低渗气藏的单井产能,提高低渗气藏的开发效益,而准确计算气井产能并分析其影响因素是压裂优化设计、气藏科学开发的基础。为低渗气藏MFHW产能计算建立了一个严格的数学模型,综合运用Laplace变换、叠加原理、积分方程的边界离散求解法、矩阵理论等数学方法成功地对模型进行了求解,并对不同因素影响下的产能进行了定量计算和分析,分析了气层有效厚度、气藏渗透率、压裂缝条数、压裂缝半长、压裂缝导流能力对气井产能的影响,同时也分析了地层流入各条压裂缝流量的差异。研究结果表明,气层有效厚度或气藏渗透率增大时,气井产量几乎呈线性增大;压裂缝条数、压裂缝半长、压裂缝导流能力增大,产量增大,但前期增速快,后期增速慢;地层流入各条压裂缝的流量在早期差别不大,晚期差别明显——端部流量大于中部流量。  相似文献   

6.
水平井压裂后流体渗流理论备受国内外学者的重视,现有的水平井压裂后产能预测模型大部分都关注的是压裂后水平井稳态渗流过程产量的计算,而对于整个生产渗流的过程一般都是由不稳定渗流和稳定(拟稳定)渗流两部分组成的,若需要准确的掌握油藏的生产动态,也需要不稳定阶段的产能预测;但是压裂水平井的不稳定渗流模型仅针对不稳定早期阶段,并未涉及压力波传到边界之后不稳定晚期渗流问题。为此,对于一口径向封闭的均质地层可以通过应用复位势理论和压降叠加原理等渗流力学理论,推导出适用于压裂水平井不稳定晚期的流体渗流模型。该模型考虑了裂缝间干扰、裂缝的非对称性、不同裂缝方位角和不同裂缝间距等参数的影响,可更好用于模拟水平井压裂后生产的渗流规律,并选取压裂水平井实例进行产量的计算分析。这对于水平井压裂效果预测和参数优化设计具有指导意义。  相似文献   

7.
水平井分段压裂技术是高效开发致密气藏的重要手段,但压裂后的产能评价是开发过程中的难点。基于Al-Ahmadi的三重介质模型,建立了三重介质渗流模型,最后导出了拉氏空间下的产能公式,得了模型的解析解,并根据现场生产数据进行了有效性验证,同时还对影响裂缝性致密气藏压裂水平井产能的因素进行了详细深入的敏感性分析。结果表明:水平井长度对产能的影响在后期才有所体现,储层的生产主要是由人工裂缝控制,人工裂缝性质对产能影响显著,基质和天然裂缝对产能有着不同程度的影响。因此,裂缝性致密气藏水平井分段压裂设计以及产能评价与优化过程中应该综合考虑储层性质和人工裂缝的影响。  相似文献   

8.
基于非稳态渗流理论,应用椭圆渗流思想,在压裂气藏基质椭圆流和压裂裂缝高速非达西渗流耦合中,引入裂缝干扰,建立压裂水平井产能预测模型.利用数值求解方法分析椭圆长轴、短轴在气藏开采中的扩展规律,揭示了裂缝的扩展特征.算例计算结果表明:裂缝控制的椭圆长轴、短轴随生产时间逐渐扩展,短轴扩展速度要大于长轴,渗流区逐渐由椭圆转化为圆形;相邻裂缝控制的椭圆流在200 d左右开始相交,发生干扰,并且随着时间的增加,相交面积逐渐增加,干扰加剧,考虑裂缝干扰后,产量递减速度变大,此时,与裂缝导流能力相比,裂缝长度对产量影响更为显著.研究成果对气藏压裂水平井的设计提供了科学依据.  相似文献   

9.
对苏里格东区某实际致密气藏进行了压裂水平井产能影响因素分析,得到主控因素,并据此完成不同储层条件下压裂水平井参数设计的优化图版.结果表明:地层渗透率越低、各向异性越强,则水平井段和裂缝的最优长度越大,最优压裂裂缝间距越小,且各影响因素对增产效果影响具有相关性.  相似文献   

10.
针对致密气藏水平井开发产能主控因素难以明确的问题,基于致密储层渗流理论,建立了考虑应力敏感因素的压裂水平井渗流模型,根据渗流模型分析了裂缝条数、裂缝长度、裂缝导流能力以及应力敏感等因素对水平井产能的影响。结果表明,压裂水平井单井产能随着裂缝条数增多、裂缝半长增大及导流能力增强而增大,随着应力敏感的增强而减小。通过定量比对,明确了各因素与压裂水平井产量的相关性为:裂缝数量>裂缝半长>应力敏感>导流能力。该项研究对水平井产能评价以及致密气藏水平井开发井网正确部署具有一定的指导意义。  相似文献   

11.
压裂是致密气开发的重要技术手段,致密气只有经过压裂才能获得工业气流。而对压裂裂缝的深入认识则是气田高效开发的重要基础。目前关于裂缝评价的技术诸如微裂缝检测等多为静态描述,且大部分技术成本昂贵,实施难度大。提出了一种裂缝动态评价方法,该方法通过将成熟的不稳定试井技术和生产动态分析方法相结合,可以准确获得裂缝的参数,并通过生产数据分段拟合则可获知裂缝的动态变化状况。同时以苏里格致密气井为例,并且调研分析前人的研究成果,回归出了裂缝与地层压力的关系式。  相似文献   

12.
由于裂缝与裂缝之间、裂缝与井筒之间和水平井筒渗流的综合影响,导致致密气藏压裂水平井的渗流场十分复杂,二项式产能公式难以确定。鉴于此,采用一种新的思路,建立多级压裂水平井的数值模型,通过拟合生产历史曲线得到井筒和储层的相关参数,进而获得该井的初始及目前的二项式产能方程。苏里格气田苏53区块的实际应用表明,该方法对于致密气藏压裂水平井产能评价具有很强的适用性和可操作性,使产能评价真正地实现"动态化"。  相似文献   

13.
温度预测模型是实现基于分布式温度测试(DTS)解释产出剖面的基础,但定量预测低渗气藏压裂水平井温度剖面仍是一个难题。为此,建立了一套考虑多种微热效应的低渗气藏压裂水平井耦合温度预测模型,模拟了一口低渗气藏压裂水平井的温度剖面,分析了温度剖面特征,并采用正交试验分析法评价了压裂水平井温度剖面对不同因素的敏感性。研究结果表明:①压裂水平井温度剖面呈现出不规则的“锯齿状”,任一“锯齿”都对应着一条有效人工裂缝;②各级裂缝处的井筒温降基本上与裂缝半长呈正相关关系;③从趾端到跟端,各级裂缝位置处的井筒温降与裂缝半长的比值(△T/xf) 依次递减;④压裂水平井温度剖面对各因素的敏感性依次为:裂缝半长>产量>地层渗透率>井筒半径>地层孔隙度>裂缝导流能力>水平倾角。该研究成果为实现基于DTS解释压裂水平井产出剖面提供了模型基础和理论支撑,对于压裂水平井改造效果评价和出水位置定量诊断具有重要意义。  相似文献   

14.
考虑长庆油田特低渗油藏地貌特征和储层各向异性,提出了一种压裂水平井新型布井方式。从钻井和油藏两个角度论证新型布井的可行性。丛式井技术可确保压裂水平井新型布井的顺利实施。利用油藏数值模拟方法,分别从单井产能、阶段采出程度、含水率、波及面积等方面评价了压裂水平井新型布井在交错、菱形和矩形井网中的开发效果。研究表明,新型布井与常规布井在交错井网中具有相同的开发效果;菱形和矩形井网中,新型布井可以提高阶段采出程度、单井产能和相对波及面积,降低相同采出程度对应的含水率。新型布井在菱形井网(矩形井网)30 a 的相对波及面积和采出程度分别提高6.00%(10.00%)和0.96%(1.60%),含水率95% 的采出程度提高1.05%(1.50%)  相似文献   

15.
随着越来越多致密油藏投入开发,致密油藏开发已经成为国内外的热点。建立了多级压裂水平井渗流数学模
型,编制了三维三相致密砂岩非线性渗流数值模拟模型。利用成熟商业软件对开发的新模型进行了验证。对实际生
产井进行了历史拟合,对裂缝导流能力、改造区域规模、改造区域渗透率、非线性系数、初始压力等参数进行了分析。
结果表明:开发的新模型能够对致密油藏多级压裂水平井进行有效地模拟,并反映致密油藏渗流的非线性特征。适当
增加裂缝导流能力、增大改造区域、改造区域渗透率能够减小近井周围流动阻力,增大产能,而非线性系数增加了流体
流动阻力,减小了产能。  相似文献   

16.
水平井多级压裂技术已经成为目前开发页岩气藏的主要手段。针对气体在页岩流动过程中存在的吸附解吸、扩散、滑脱、启动压力梯度和应力敏感等效应,基于三线性渗流方程的基础上,推导出五线性渗流方程,建立了页岩气藏压裂水平井渗流数学模型。运用Laplace变换和Duhamel原理,求解出考虎井筒储集效应和表皮效应的页岩气藏压裂水平井Laplace空间的无因次井底拟压力解。通过Stefest数值反演,绘制了无因次拟压力曲线和拟压力导数曲线。依据特征曲线划分了流动阶段,并分析了不同影响因素对气井压力特征曲线的影响。研究结果表明:压裂水平井泄流范围可划分为五个流动区域,气井的压力特征曲线可划分为六个流动阶段。裂缝导流能力对水平井压力特征曲线的影响主要在过渡阶段、双线性流阶段;吸附系数主要影响过渡段、双线性流段、线性流段以及拟稳定流阶段;视渗透率系数主要影响双线性流动阶段、过渡阶段、窜流扩散阶段、地层线性阶段和拟稳定流阶段;导压系数影响窜流扩散阶段、地层线性流阶段和拟稳定流阶段;压裂改造区宽度主要影响地层线性流和系统拟稳态流动段。模型可以正确认识页岩储层复杂渗流规律,判别页岩气藏压裂水平井流动阶段,为预测单井产能和优化压裂设计参数提供了科学依据。  相似文献   

17.
针对页岩储层纳米孔隙中天然气扩散作用对压裂水平井产能有多大影响这一问题,开展了渗流数学模型建
立、求解及定量计算分析研究,研究中采用了三线性渗流机理、克努森扩散机理及扩散引起渗透率增加值公式,绘制了
不同孔隙直径下克努森数与储层压力关系图版,得到了可用于实际生产预测的单井产能方程,从孔隙大小、储层压力、
气藏深度等3 个方面进行了扩散作用的分析,给出了页岩气藏生产过程中需要考虑扩散作用的各指标阈值。结果表
明,在储层压力条件下,孔隙越小的储层,扩散作用对产能的影响越大,而对于较大孔隙的储层,当井底压力低于模型
中计算出的阈值时,扩散作用就不应该被忽略。  相似文献   

18.
水平井加多段压裂已成为页岩气藏的主要开发模式,针对压裂后的页岩气藏具有人工裂缝、天然裂缝及纳米
级孔隙等多种流动空间,开展了渗流数学模型的建立与求解研究。通过等效简化构建了三线性渗流模型,考虑了具有
解吸吸附作用的基质空间线性渗流、以等效天然裂缝为主的裂缝网络空间线性渗流、等效主裂缝内的线性渗流。对
三重渗流分别建立了极坐标空间和拉普拉斯空间下的数学模型,并对数学模型进行求解,得出单井气藏的产能公式和
井底压力公式。应用所建立模型,对实际压裂水平井的产能进行了求解,与实际产量进行对比,表明利用文中方法建
立的模型及解析解进行产能预测分析是可行的。  相似文献   

19.
页岩气藏渗透率较低,流动过程中存在边界层影响和吸附解吸现象。在建立页岩气藏压裂水平井试井模型过程中,非压裂区域考虑为存在吸附效应的非达西流动,压裂区域考虑为双重孔隙介质达西流动,水力压裂裂缝区为达西流动。基于油气渗流理论和数学物理方法,建立了考虑吸附效应的非达西流压裂水平井试井模型,求解得到了考虑井筒存储和表皮效应的压裂水平井井底压力响应,并进行了压力响应参数敏感性分析。结果表明:启动压力梯度主要影响特征曲线后期上翘程度;窜流系数主要影响"凹槽"的位置,当同时考虑启动压力梯度和吸附解吸时,窜流系数还影响着解吸时间的长短;解吸系数主要反映解吸扩散程度,随着压力降低,页岩气解吸效果越明显,特征曲线中的"凹槽"宽度和下凹程度越大。研究对于页岩气藏压裂水平井的开发与动态监测具有一定的指导意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号