首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为解决变分模态分解方法在提取齿轮箱滚动轴承的故障特征频率时受模态个数和惩罚项系数影响的问题,提出了一种基于人工鱼群算法优化变分模态分解的轴承故障诊断方法.首先,利用人工鱼群算法优化变分模态分解方法的模态个数和惩罚项系数;其次,故障振动信号经优化的变分模态分解方法分解,获得若干模态分量;最后,筛选包络熵值最小的分量进行包...  相似文献   

2.
针对风电传动系统齿轮箱的故障诊断问题,在脉冲激励响应的基础上提出了一种频率诱导变分模态分解(FIVMD)方法,并将其应用于齿轮箱故障特征提取.首先,根据振动信号傅里叶谱的极大值分布估计齿轮箱系统的自振频率;然后,将固有频率的估计值作为各模态分量中心频率的初始化位置,并通过交替乘子法将原始信号自适应分解为本征模态函数;其次,通过希尔伯特变换对各本征模态函数求包络谱,并计算其故障特征频率比;最后,挑选出故障特征频率比最大的模态分量,并根据其包络谱特征实现齿轮箱故障的有效识别.以维斯塔斯某3 MW风电机组圆柱齿轮断齿故障为例,验证了FIVMD在工程应用中的有效性和优越性.  相似文献   

3.
为有效抑制噪声对地震数据的影响,根据地震信号的时频特性,提出了基于变分模态分解的相关能量熵阈值去噪方法。采用变分模态分解算法将地震信号分解为频率由高频到低频且具有一定带宽的模态分量,计算各模态分量与地震信号的规范化相关系数,实现对各模态分量中的有效信息和噪声的定位。将去除有效信息的各模态分量分成若干子区间,分别计算各子区间的噪声能量熵,选取能量熵最大区间的模态分量系数作为该分量的噪声方差获得该分量的阈值,再将经阈值处理后的各模态分量重构得到去噪信号。通过对合成地震模型和实际地震信号进行去噪处理,并与直接去除高频分量的变分模态分解去噪方法进行了对比,结果表明,该方法能在强噪声环境下更有效地提取地震信号中的有效成分,提高信噪比。  相似文献   

4.
针对传统轴承故障预警实时性较差、故障特征提取准确性影响预警效果的问题,将语音端点识别思想进行迁移,采用谱熵梅尔积特征的双门限法实时追踪故障起始点.为克服变分模态分解(variational mode decomposition,VMD)参数选取不当和端点效应对提取效果造成的影响,提出能量差网格搜索法对VMD进行参数寻优,并用支持向量回归机对端点效应进行抑制,结合多尺度加权排列熵在检测振动信号随机性方面的优势,充分发挥VMD对信号的重构能力,对起始点后的故障段进行特征捕捉.通过实际轴承故障信号的实验及数据分析,验证了该方法在轴承故障预警中的有效性.   相似文献   

5.
齿轮箱故障振动信号具有非线性、非平稳的特点,在故障早期难以实现故障特征的提取和故障类型的识别。本文提出磷虾群算法(krill herd algorithm, KHA)-变分模态分解(variational mode decomposition,VMD)-多尺度排列熵(multi-scale permutation entropy,MPE)与支持向量机(support vector machine,SVM)相结合的齿轮箱故障类型识别算法。首先对采集到的齿轮箱振动信号利用KHA优化的VMD进行分解,选取有效分量进行重构,然后求取其MPE作为特征向量,最后将特征向量输入SVM进行故障类型的识别。通过实测数据的分析表明,故障类型识别准确率达到了99.14%,该方法在机车车辆、发电机组等装备的齿轮箱状态监测和故障诊断中具有一定的参考价值。  相似文献   

6.
针对滚动轴承故障信号的自适应提取和分解的问题,提出一种基于乌鸦搜索算法优化变分模态分解的滚动轴承故障诊断方法。将变分模态分解(variational mode decomposition, VMD)方法的关键参数K和α采用新型的乌鸦搜索算法(crow search algorithm, CSA)进行优化,得到最优参数组合;再将最优参数组合输入到变分模态分解算法中,对故障信号进行分解从而得到多个本征模态分量(intrinsic mode function, IMF);以样本熵值为适应度函数挑选最优分量,对最优分量进行包络解调,分析其包络谱判断出轴承的故障类型。结果表明,提出的方法在兼顾全局搜索和局部搜索的同时也能将复杂的轴承故障信号准确地进行分解,提取出最优分量进行分析从而判断出轴承故障类型。  相似文献   

7.
基于振动监测信号的故障诊断技术,对于船舶、油气田、核电等关键领域中大型高速柴油机的健康管理和智能运维具有重要意义。针对柴油发动机气门间隙异常故障,提出了基于振动数据驱动的故障诊断方法。首先,提出模态数量和惩罚因子均为自动优选的改进变分模态分解(VMD)方法,克服了传统VMD方法中上述参数需凭经验预设的缺点;进一步,对VMD分量进行多域特征提取,利用核密度估计方法进行特征敏感性的排序和选择;最后,构建全连接网络分类模型,将优选后的故障敏感特征通过分类模型进行故障识别。利用故障模拟实验台验证了不同工况下的气门间隙异常数据,结果表明本文所提的基于改进变分模态分解的气门间隙异常诊断方法故障识别率超过86%,具有良好的应用效果。  相似文献   

8.
9.
为提高变压器有载分接开关(On-Load Tap-Changer,OLTC)机械状态智能诊断水平,提出了基于改进变分模态分解(Improved Variational Mode Decomposition,IVMD)-权重散度的OLTC机械状态特征提取方法,以及和声搜索算法(Harmony Search,HS)优化相关向量机(Relevance Vector Machine,RVM)的故障分类方法.本文进行模拟实验测得了多组不同工况下的OLTC机械振动信号,通过IVMD算法将振动信号分解为一系列有限带宽本征模态函数(Intrinsic Mode Function,IMF),计算IMF分量与原始振动信号的K-L散度(Kullback-Leibler Divergence,K-L),再乘上权重系数得到权重散度,以权重散度来表征多组OLTC机械振动信号的时频域复杂度.同时构建了RVM多分类模型,并通过和声搜索算法对RVM的核函数选择进行了优化,有效地实现了对于权重散度的分类.实验与数据分析结果表明,本文所提综合诊断方法精度较高,可准确提取机械故障特征,能够为OLTC智能故障诊断提供必要的参考.  相似文献   

10.
针对癫痫发作前期脑电信号中含有运动伪迹影响癫痫预测的问题,提出一种变分模态分解-自适应熵阈值(VMD-AET)的运动伪迹去除方法。设计了实验室环境下8种模拟运动状态,分析不同运动状态下脑电信号的变化规律;利用VMD方法获得脑电信号各频带的变分模态分量,对分量进行能量熵求解和排序;采用不同的熵阈值进行运动状态下伪迹分量的去除,比较得到能量熵的最优阈值,得到不含运动伪迹的脑电信号;采用Matlab软件使用VMD-AET方法实现了脑电信号中运动伪迹的有效去除。实验结果表明:每种运动状态均能达到去伪迹效果,在跑步时伪迹去除率和信噪比提升最高;对癫痫病人发作前期脑电信号的伪迹去除率为5.54%,信噪比提升达到10.35 dB;与常用的独立成分分析和经验模式分解的阈值法进行对比,所提VMD-AET方法的伪迹去除率和信噪比提升了1.47%和3.36 dB,可满足对移动脑电运动干扰的预处理要求。  相似文献   

11.
针对轴承故障诊断方法在变工况条件下诊断效果不佳的问题,提出了一种基于残差神经网络的滚动轴承故障诊断方法.该方法首先以滚动轴承时域信号数据作为输入,针对信号的时变性改进了数据池化层,改进的数据池化层利用三个连续的卷积层串联构建而成,目的在于能够有效地提取振动信号中的故障特征信息,并减少残差神经网络中参数的计算量;然后设计了一种空洞卷积和残差块相结合的空洞残差块,用于特征信息的学习;最后通过在全连接层后加入Dropout层丢弃一定比例的神经元,能有效避免过拟合的负面影响.使用凯斯西储大学轴承数据集进行仿真实验,与SVM+EMD+Hilbert包络谱、BPNN+EMD+Hilbert包络谱和Resnet三种方法作对比分析,结果表明该方法在变工况下的滚动轴承故障诊断中具有更高的诊断准确率、更强的抗噪性和泛化能力.  相似文献   

12.
EMD共振解调在滚动轴承故障诊断中的应用   总被引:1,自引:0,他引:1       下载免费PDF全文
针对人为加工的滚动轴承点蚀故障数据难以模拟真实疲劳失效过程的问题,提出将滚动轴承强化寿命试验的轴承疲劳失效过程数据作为故障诊断数据,结合经验模态分解(Em-piricalMode Decomposition,EMD)与共振解调技术对真实疲劳失效的滚动轴承进行故障诊断.依托经验模态分解的自适应性,有效的将携带故障信息的高频调制信号从原信号中分离出来,实现了信号的带通滤波;利用H ilbert变换进行解调分析得到包含故障特征信息的低频包络信号,经过频谱分析后实现对疲劳失效滚动轴承故障特征提取和故障辨识.实验结果表明:该方法能诊断真实情况的滚动轴承疲劳失效故障.  相似文献   

13.
回转支承机械结构和工作条件特殊,导致其故障机制复杂,传统的信号分析方法难以对其进行有效的故障诊断.提出了一种基于小波分解与能量谱相结合的回转支承故障诊断方法.利用小波多尺度、多分辨率的特性,对回转支承振动信号进行多尺度分解;根据回转支承低频故障特性,对小波分解后的低频区进行频谱分析,再结合各尺度频带能量谱进行回转支承故障诊断.通过对回转支承加速寿命试验中各阶段数据分析表明,该方法能够有效、准确地诊断出回转支承故障模式,相比单一的小波频谱分析诊断精度更高、可靠性更好,具有一定的工程实用价值.  相似文献   

14.
针对故障轴承信号的非线性、非高斯性,提出了一种基于双谱和纠错编码支持向量机(error-correcting output codes support vector machine,ECOC-SVM)的滚动轴承故障诊断方法。使用故障轴承振动信号双谱特征构造特征向量,在SVM的训练过程中,使用微粒群算法(particleswarm optimization,PSO)对支持向量机的参数进行优化。实验结果表明该方法能获得较高分类准确率。  相似文献   

15.
张云鹏  盖强 《应用科技》2011,(7):26-28,34
为了研究滚动轴承信号的非平稳特征,应用时频分析技术是一种较好的选择.研究了S变换,该方法是将短时傅里叶变换同小波变换结合起来发展的一种新算法.对多种时频分析方法进行了比较,得出S变换优于其他方法的一些特点,提出基于S变换的滚动轴承信号瞬态特征检测方法.结果表明,S变换能够以较高时频分辨率表示轴承振动中的非平稳特征,能反映出信号时频谱真实的物理意义,并且计算速度快.诊断结果验证了该方法可以用于滚动轴承的故障诊断.  相似文献   

16.
提出了小波包联合自回归功率谱理论的故障诊断方法.对采集的轴承振动信号采用高、低正交共轭镜面滤波器组,将信号划分到不同频道上.滤波器每作用一次,数据点减半,采样的时间增至两倍.选取轴承缺陷所在频段的数据插零,将其他频带补零重构提高缺陷信号的时频分辨率;然后通过AR功率谱分析轴承运行状态,诊断出轴承对应的故障.对207滚动轴承的早期缺陷作了实际诊断,诊断结果与实际较为符合.证明该方法是一种有效的弱信号缺陷提取与诊断方法.  相似文献   

17.
小波减噪和双谱分析在轴承故障诊断中的应用   总被引:1,自引:0,他引:1  
提出了基于小波减噪技术和双谱分析的滚动轴承故障诊断的方法。利用小波变换及其减噪技术对滚动轴承早期微弱故障振动信号的特征频率进行提取,采用双谱估计可绘出滚动轴承故障信号的特征图谱。实验表明,小波减噪和双谱分析方法可以敏感地监测滚动轴承工作状态,并且利用特征图谱可以有效地识别滚动轴承不同的故障特征。  相似文献   

18.
基于噪声小波包络谱的主轴承磨损故障诊断   总被引:1,自引:0,他引:1  
传统的基于振动信号的内燃机主轴承磨损故障诊断中安装传感器以及提取故障特征频率很繁琐,为此,提出了基于噪声和正交小波监测往复式活塞发动机滑动主轴承磨损故障的一种新方法.利用Symlets小波分析将测得的机体噪声信号变换到时频域,得到含有内燃机主轴承间隙磨损状态的时频信息.主轴承磨损故障会使机体噪声信号的高频成分增加,而且高频滤波成分特征与内燃机的冲击过程相对应,所以,需选择合适的高频带加以提取并进行包络谱分析.通过声级计测取了代表主轴承4类间隙磨损程度的噪声信号,发现2个特征频率处的能量对间隙磨损状态比较敏感,均随着磨损量的增加而增加.通过该方法,可利用机体噪声信号监测主轴承的磨损状态.  相似文献   

19.
针对轴承故障诊断问题,提出一种基于相关度分析与网格搜索算法(GS)优化支持向量机(SVM)的轴承故障诊断方法.采用GS算法对SVM的惩罚参数c和核函数参数g进行寻优,以此建立分类器用于识别轴承故障类型.在模型建立方面巧妙地加入了分层的思想,通过相关度分析之后采用多层GS-SVM模型使轴承的故障诊断准确率相对于近年来的研...  相似文献   

20.
针对滚动轴承不同故障类型和不同损伤程度识别准确率较低的问题,提出了将小波包能量熵、灰狼优化算法和支持向量机相结合的故障诊断方法.首先,将滚动轴承振动信号进行3层小波包分解,对第3层各频段小波包分解系数进行重构,提取各频段成分的能量熵构成故障特征向量;其次,利用灰狼优化算法实现支持向量机参数优化;最后,基于优化后的支持向量机分类模型完成对测试集滚动轴承不同故障类型和不同损伤程度特征向量的识别诊断.实验结果表明,相比实验和文献中其他方法,该方法对滚动轴承不同故障类型和不同损伤程度具有更加突出的故障辨识能力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号