首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA. Here we show that antibodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sarcolemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.  相似文献   

2.
Dystrophin is associated with a complex of muscle membrane (sarcolemmal) glycoproteins that provide a linkage to the extracellular matrix protein, laminin. The absence of dystrophin leads to a dramatic reduction of the dystrophin-associated proteins (156DAG, 59DAP, 50DAG, 43DAG and 35DAG) in the sarcolemma of patients with Duchenne muscular dystrophy and mdx mice. Here we demonstrate that dystrophin-related protein (DRP, utrophin), an autosomal homologue of dystrophin, is associated with an identical or antigenically similar complex of sarcolemmal proteins and that DRP and the dystrophin/DRP-associated proteins colocalize to the neuromuscular junction in Duchenne muscular dystrophy and mdx muscle. The DRP and dystrophin/DRP-associated proteins are found throughout the sarcolemma in small-calibre skeletal muscles and cardiac muscle of adult mdx mice. Because these muscles show minimal pathological changes, our results could provide a basis for the upregulation of DRP as a potential therapeutic approach.  相似文献   

3.
Duchenne muscular dystrophy (DMD) is a debilitating X-linked muscle disease. We have used sequence information from complementary DNA clones, derived from the gene that is deleted in DMD patients, to generate an antiserum that stains the surface membrane of intact human and mouse skeletal muscle, but not that of DMD patients and mdx mice. Here we identify the protein reacting with this antiserum as a single component of relative molecular mass 210,000 (Mr = 210K) that fractionates with a low-ionic strength extract of intact human and mouse skeletal muscle. It is therefore distinct from the 400 K protein found in the heavy microsomal fraction of normal muscle and identified as a putative product of the DMD gene. We also analyse further the disease specificity of the antiserum. Positive staining is seen in normal controls, and in samples from patients with a wide range of muscular dystrophies other than DMD. Becker muscular dystrophy, which is allelically related to DMD, was the only other exception, and gave a sporadic staining pattern. The demonstration of a specific defect in the surface membrane of DMD muscle fibres substantiates the hypothesis that membrane lesions may initiate muscle degradation in DMD.  相似文献   

4.
Duchenne muscular dystrophy (DMD) is a severe and progressive muscle wasting disorder caused by mutations in the dystrophin gene that result in the absence of the membrane-stabilizing protein dystrophin. Dystrophin-deficient muscle fibres are fragile and susceptible to an influx of Ca(2+), which activates inflammatory and muscle degenerative pathways. At present there is no cure for DMD, and existing therapies are ineffective. Here we show that increasing the expression of intramuscular heat shock protein 72 (Hsp72) preserves muscle strength and ameliorates the dystrophic pathology in two mouse models of muscular dystrophy. Treatment with BGP-15 (a pharmacological inducer of Hsp72 currently in clinical trials for diabetes) improved muscle architecture, strength and contractile function in severely affected diaphragm muscles in mdx dystrophic mice. In dko mice, a phenocopy of DMD that results in severe spinal curvature (kyphosis), muscle weakness and premature death, BGP-15 decreased kyphosis, improved the dystrophic pathophysiology in limb and diaphragm muscles and extended lifespan. We found that the sarcoplasmic/endoplasmic reticulum Ca(2+)-ATPase (SERCA, the main protein responsible for the removal of intracellular Ca(2+)) is dysfunctional in severely affected muscles of mdx and dko mice, and that Hsp72 interacts with SERCA to preserve its function under conditions of stress, ultimately contributing to the decreased muscle degeneration seen with Hsp72 upregulation. Treatment with BGP-15 similarly increased SERCA activity in dystrophic skeletal muscles. Our results provide evidence that increasing the expression of Hsp72 in muscle (through the administration of BGP-15) has significant therapeutic potential for DMD and related conditions, either as a self-contained therapy or as an adjuvant with other potential treatments, including gene, cell and pharmacological therapies.  相似文献   

5.
Association of dystrophin and an integral membrane glycoprotein   总被引:56,自引:0,他引:56  
K P Campbell  S D Kahl 《Nature》1989,338(6212):259-262
Duchenne muscular dystrophy (DMD) is caused by a defective gene found on the X-chromosome. Dystrophin is encoded by the DMD gene and represents about 0.002% of total muscle protein. Immunochemical studies have shown that dystrophin is localized to the sarcolemma in normal muscle but is absent in muscle from DMD patients. Many features of the predicted primary structure of dystrophin are shared with membrane cytoskeletal proteins, but the precise function of dystrophin in muscle is unknown. Here we report the first isolation of dystrophin from digitonin-solubilized skeletal muscle membranes using wheat germ agglutinin (WGA)-Sepharose. We find that dystrophin is not a glycoprotein but binds to WGA-Sepharose because of its tight association with a WGA-binding glycoprotein. The association of dystrophin with this glycoprotein is disrupted by agents that dissociate cytoskeletal proteins from membranes. We conclude that dystrophin is linked to an integral membrane glycoprotein in the sarcolemma. Our results indicate that the function of dystrophin could be to link this glycoprotein to the underlying cytoskeleton and thus help either to preserve membrane stability or to keep the glycoprotein non-uniformly distributed in the sarcolemma.  相似文献   

6.
An important corollary to the recent advances in our understanding of the primary cause of Duchenne muscular dystrophy, is the validation of genuine genetic homologues as animal models of the disease in which potential therapies can be tested. The persistent skeletal muscle necrosis that characterizes human Duchenne muscular dystrophy is also seen in the mdx mouse and is, in both, a consequence of a deficiency of dystrophin, probably within the muscle fibres themselves. As injected muscle precursor cells of one genotype can fuse with host muscle fibres of a different genotype and express the donor genes, we decided to test grafts of normal muscle precursor cells to see if they could induce synthesis of dystrophin in innately dystrophin-deficient mdx muscle fibres. We show that injected normal muscle precursor cells can fuse with pre-existing or regenerating mdx muscle fibres to render many of these fibres dystrophin-positive and so to partially or wholly rescue them from their biochemical defect.  相似文献   

7.
Immunoelectron microscopic localization of dystrophin in myofibres   总被引:49,自引:0,他引:49  
S C Watkins  E P Hoffman  H S Slayter  L M Kunkel 《Nature》1988,333(6176):863-866
Duchenne muscular dystrophy, a common X-linked recessive human disease, has recently been shown to be caused by the deficiency of a large, low abundance protein called 'dystrophin'. Biochemical techniques have shown dystrophin to be membrane-associated in skeletal muscle, with enrichment of dystrophin in the t-tubules of 'triads'. Other studies using immunohistochemistry on thick (10 micron) sections have shown dystrophin to be located at the periphery of muscle fibres, possibly at the plasma membrane. These results have been interpreted as being either consistent and complementary, or contradictory. To localize dystrophin more precisely relative to these membrane systems we have employed highly sensitive and spatially accurate immuno-gold electron microscopy of ultra-thin (70-100 nm) cryosections. The major distribution of dystrophin was on the cytoplasmic face of the plasma membrane of muscle fibres, and possibly on the contiguous t-tubule membranes. The presented data, taken together with recently accumulated information regarding the primary structure of dystrophin, suggests that dystrophin is a component of the membrane cytoskeleton in myogenic cells. Thus, myofibre necrosis in patients affected with Duchenne muscular dystrophy is likely the result of plasma membrane instability.  相似文献   

8.
X-linked recessive Duchenne muscular dystrophy (DMD) is caused by the absence of dystrophin, a membrane cytoskeletal protein. Dystrophin is associated with a large oligomeric complex of sarcolemmal glycoprotein. The dystrophin-glycoprotein complex has been proposed to span the sarcolemma to provide a link between the subsarcolemmal cytoskeleton and the extracellular matrix component, laminin. In DMD, the absence of dystrophin leads to a large reduction in all of the dystrophin-associated protein. We have investigated the possibility that a deficiency of a dystrophin-associated protein could be the cause of severe childhood autosomal recessive muscular dystrophy (SCARMD) with a DMD-like phenotype. Here we report the specific deficiency of the 50K dystrophin-associated glycoprotein (M(r) 50,000) in sarcolemma of SCARMD patients. Therefore, the loss of this glycoprotein is a common denominator of the pathological process leading to muscle cell necrosis in two forms of muscular dystrophy, DMD and SCARMD.  相似文献   

9.
The primary sequence of two components of the dystrophin-glycoprotein complex has been established by complementary, DNA cloning. The transmembrane 43K and extracellular 156K dystrophin-associated glycoproteins (DAGs) are encoded by a single messenger RNA and the extracellular 156K DAG binds laminin. Thus, the 156K DAG is a new laminin-binding glycoprotein which may provide a linkage between the sarcolemma and extracellular matrix. These results support the hypothesis that the dramatic reduction in the 156K DAG in Duchenne muscular dystrophy leads to a loss of a linkage between the sarcolemma and extracellular matrix and that this may render muscle fibres more susceptible to necrosis.  相似文献   

10.
Calcium entry through stretch-inactivated ion channels in mdx myotubes.   总被引:18,自引:0,他引:18  
A Franco  J B Lansman 《Nature》1990,344(6267):670-673
Recent advances in understanding the molecular basis of human X-linked muscular dystrophies have come from the identification of dystrophin, a cytoskeletal protein associated with the surface membrane. Although there is little or virtually no dystrophin in affected individuals, it is not known how this causes muscle degeneration. One possibility is that the membrane of dystrophic muscle is weakened and becomes leaky to Ca2+. In muscle from mdx mice, an animal model of the human disease, intracellular Ca2+ is elevated and associated with a high rate of protein degradation. The possibility that a lack of dystrophin alters the resting permeability of skeletal muscle to Ca2+ prompted us to compare Ca2(+)-permeable ionic channels in muscle cells from normal and mdx mice. We now show that recordings of single-channel activity from mdx myotubes are dominated by the presence of Ca2(+)-permeable mechano-transducing ion channels. Like similar channels in normal skeletal muscle, they are rarely open at rest, but open when the membrane is stretched by applying suction to the electrode. Other channels in mdx myotubes, however, are often open for extended periods of time at rest and close when suction is applied to the electrode. The results show a novel type of mechano-transducing ion channel in mdx myotubes that could provide a pathway for Ca2+ to leak into the cell.  相似文献   

11.
Congenital muscular dystrophy is a heterogeneous and severe, progressive muscle-wasting disease that frequently leads to death in early childhood. Most cases of congenital muscular dystrophy are caused by mutations in LAMA2, the gene encoding the alpha2 chain of the main laminin isoforms expressed by muscle fibres. Muscle fibre deterioration in this disease is thought to be caused by the failure to form the primary laminin scaffold, which is necessary for basement membrane structure, and the missing interaction between muscle basement membrane and the dystrophin-glycoprotein complex (DGC) or the integrins. With the aim to restore muscle function in a mouse model for this disease, we have designed a minigene of agrin, a protein known for its role in the formation of the neuromuscular junction. Here we show that this mini-agrin-which binds to basement membrane and to alpha-dystroglycan, a member of the DGC-amends muscle pathology by a mechanism that includes agrin-mediated stabilization of alpha-dystroglycan and the laminin alpha5 chain. Our data provides in vivo evidence that a non-homologous protein in combination with rational protein design can be used to devise therapeutic tools that may restore muscle function in human muscular dystrophies.  相似文献   

12.
A Mikami  K Imoto  T Tanabe  T Niidome  Y Mori  H Takeshima  S Narumiya  S Numa 《Nature》1989,340(6230):230-233
In cardiac muscle, where Ca2+ influx across the sarcolemma is essential for contraction, the dihydropyridine (DHP)-sensitive L-type calcium channel represents the major entry pathway of extracellular Ca2+. We have previously elucidated the primary structure of the rabbit skeletal muscle DHP receptor by cloning and sequencing the complementary DNA. An expression plasmid carrying this cDNA, microinjected into cultured skeletal muscle cells from mice with muscular dysgenesis, has been shown to restore both excitation-contraction coupling and slow calcium current missing from these cells, so that a dual role for the DHP receptor in skeletal muscle transverse tubules is suggested. We report here the complete amino-acid sequence of the rabbit cardiac DHP receptor, deduced from the cDNA sequence. We also show that messenger RNA derived from the cardiac DHP receptor cDNA is sufficient to direct the formation of a functional DHP-sensitive calcium channel in Xenopus oocytes. Furthermore, higher calcium-channel activity is observed when mRNA specific for the polypeptide of relative molecular mass approximately 140,000 (alpha 2-subunit) associated with skeletal muscle DHP receptor is co-injected.  相似文献   

13.
Myotonic muscular dystrophy, or Steinert disease, is a dominantly inherited disease of muscle which occurs with a frequency of between 1 in 18,000 and 1 in 7,500 people (refs 1, 2). One of the prominent clinical manifestations is muscle stiffness and difficulty in relaxation of muscles after voluntary contractions. Electrophysiological signs of myotonia include increased excitability with a tendency to fire trains of repetitive action potentials in response to direct electrical and mechanical stimulation. Most experimental and clinical data suggest that myotonic muscular dystrophy arises from genetically induced alterations of the muscle membrane. We show here for the first time that muscle membranes of patients with myotonic muscular dystrophy contain the receptor for apamin, a bee venom toxin known to be a specific and high-affinity blocker of one class of Ca2+-activated K+ channels in mammalian muscle. The apamin receptor is completely absent in normal human muscle as well as in muscles of patients with spinal anterior horn disorders.  相似文献   

14.
Duchenne muscular dystrophy gene product is not identical in muscle and brain   总被引:30,自引:0,他引:30  
U Nudel  D Zuk  P Einat  E Zeelon  Z Levy  S Neuman  D Yaffe 《Nature》1989,337(6202):76-78
  相似文献   

15.
16.
Decreased osmotic stability of dystrophin-less muscle cells from the mdx mouse   总被引:18,自引:0,他引:18  
A Menke  H Jockusch 《Nature》1991,349(6304):69-71
Human X-linked Duchenne and Becker muscular dystrophies are due to defects in dystrophin, the product of an exceptionally large gene. Although dystrophin has been characterized as a spectrin-like submembranous cytoskeletal protein, there is no experimental evidence for its function in the structural maintenance of muscle. Current hypotheses attribute necrosis of dystrophin-less fibres in situ to mechanical weakening of the outer membrane, to an excessive influx of Ca2+ ions, or to a combination of these two mechanism, possibly mediated by stretch-sensitive ion channels. Using hypo-osmotic shock to determine stress resistance and a mouse model (mdx) for the human disease, we show that functional dystrophin contributes to the stability of both cultured myotubes and isolated mature muscle fibres.  相似文献   

17.
R Coronado  R Latorre 《Nature》1982,298(5877):849-852
The ionic currents underlying the cardiac action potential are believed to be much more complex than those in nerve. During the cardiac action potential, various membrane channels control the flow of K+, Na+, Ca2+ and Cl- across the sarcolemma of cardiac muscle cells. Thus, it has become increasingly clear that a detailed knowledge of the mechanisms that activate (or inactivate) heart channels is required to understand cardiac excitability. We report here the use of planar lipid bilayer techniques to detect and characterize K+ and Cl- channels in purified heart sarcolemma membrane vesicles. We have identified four different types of channel on the basis of their selectivity, conductance and gating kinetics. We present in some detail the properties of a K+ channel and a Cl- channel. We have tentatively identified the K+ channel with the ix type of current found in Purkinje, myocardial ventricular and atrial fibres. The chloride channel might be related to the transient chloride current found in Purkinje fibres.  相似文献   

18.
Yasuda S  Townsend D  Michele DE  Favre EG  Day SM  Metzger JM 《Nature》2005,436(7053):1025-1029
Dystrophin deficiency causes Duchenne muscular dystrophy (DMD) in humans, an inherited and progressive disease of striated muscle deterioration that frequently involves pronounced cardiomyopathy. Heart failure is the second leading cause of fatalities in DMD. Progress towards defining the molecular basis of disease in DMD has mostly come from studies on skeletal muscle, with comparatively little attention directed to cardiac muscle. The pathophysiological mechanisms involved in cardiac myocytes may differ significantly from skeletal myofibres; this is underscored by the presence of significant cardiac disease in patients with truncated or reduced levels of dystrophin but without skeletal muscle disease. Here we show that intact, isolated dystrophin-deficient cardiac myocytes have reduced compliance and increased susceptibility to stretch-mediated calcium overload, leading to cell contracture and death, and that application of the membrane sealant poloxamer 188 corrects these defects in vitro. In vivo administration of poloxamer 188 to dystrophic mice instantly improved ventricular geometry and blocked the development of acute cardiac failure during a dobutamine-mediated stress protocol. Once issues relating to optimal dosing and long-term effects of poloxamer 188 in humans have been resolved, chemical-based membrane sealants could represent a new therapeutic approach for preventing or reversing the progression of cardiomyopathy and heart failure in muscular dystrophy.  相似文献   

19.
Functional improvement of dystrophic muscle by myostatin blockade   总被引:42,自引:0,他引:42  
Mice and cattle with mutations in the myostatin (GDF8) gene show a marked increase in body weight and muscle mass, indicating that this new member of the TGF-beta superfamily is a negative regulator of skeletal muscle growth. Inhibition of the myostatin gene product is predicted to increase muscle mass and improve the disease phenotype in a variety of primary and secondary myopathies. We tested the ability of inhibition of myostatin in vivo to ameliorate the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD). Blockade of endogenous myostatin by using intraperitoneal injections of blocking antibodies for three months resulted in an increase in body weight, muscle mass, muscle size and absolute muscle strength in mdx mouse muscle along with a significant decrease in muscle degeneration and concentrations of serum creatine kinase. The functional improvement of dystrophic muscle by myostatin blockade provides a novel, pharmacological strategy for treatment of diseases associated with muscle wasting such as DMD, and circumvents the major problems associated with conventional gene therapy in these disorders.  相似文献   

20.
Duchenne's muscular dystrophy (DMD), which affects one in 3,500 males, causes progressive myopathy of skeletal and cardiac muscles and premature death. One approach to treatment would be to introduce the normal dystrophin gene into diseased muscle cells. When pure plasmid DNA is injected into rodent skeletal or cardiac muscle, the cells express reporter genes. We now show that a 12-kilobase full-length human dystrophin complementary DNA gene and a 6.3-kilobase Becker-like gene can be expressed in cultured cells and in vivo. When the human dystrophin expression plasmids are injected intramuscularly into dystrophin-deficient mdx mice, the human dystrophin proteins are present in the cytoplasm and sarcolemma of approximately 1% of the myofibres. Myofibres expressing human dystrophin contain an increased proportion of peripheral nuclei. The results indicate that transfer of the dystrophin gene into the myofibres of DMD patients could be beneficial, but a larger number of genetically modified myofibres will be necessary for clinical efficacy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号