首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P A Lawrence  P Johnston  P Macdonald  G Struhl 《Nature》1987,328(6129):440-442
One of the earliest molecular signs of segmentation in Drosophila embryos is the striped expression of some pair-rule genes during the blastoderm stage. Two of these genes, fushi-tarazu (ftz) and even-skipped (eve) are expressed during this stage in complementary patterns of seven stripes which develop and disappear in concert. Here, we map the cells expressing each of these two pair-rule genes with respect to the 14 stripes of cells expressing the engrailed gene. We find that both ftz and eve generate stripes which have sharp boundaries at the anterior margin, but fade away posteriorly. The anterior boundaries correspond cell by cell with the anterior boundaries of expression of the engrailed gene. We therefore suggest that a key function of early ftz and eve gene activity is the formation of a sharp stable boundary at the anterior margin of each stripe. These boundary lines, rather than the narrowing zonal stripes, would delimit the anterior boundaries of engrailed and other homoeotic genes and thereby subdivide the embryo into parasegments.  相似文献   

2.
3.
J Sampedro  I Guerrero 《Nature》1991,353(6340):187-190
In the Drosophila embryo, mutations in the segment polarity gene patched (ptc) cause the replacement of the middle region of each segment by a mirror-image duplication of the remaining structures, including the parasegmental border. This gene, which encodes a transmembrane protein, is initially expressed in a generalized way at blastoderm, but later stops being transcribed in cells expressing the engrailed gene, and even later in cells in the middle of the parasegment. The genes engrailed (en) and wingless (wg) are also segment-polarity genes, and they are expressed in adjacent stripes flanking the parasegment borders in the embryo; in ptc mutants wg expression extends anteriorly and an ectopic stripe of en expression is induced. The suggestion has been made that ptc must be transcribed in a specific subset of cells to prevent en expression anterior to the wg-expressing stripe. Here we report that unrestricted expression of ptc from a heat-shock promoter has no adverse effect on development of Drosophila embryos. The heat-shock construct can also rescue ptc mutants, restoring wg expression to its normal narrow stripe. The ectopic en stripe fails to appear, but the normal one remains unaffected. The results imply that, despite its localized requirement, the restricted expression of ptc does not itself allocate positional information.  相似文献   

4.
Control of neuronal fate by the Drosophila segmentation gene even-skipped   总被引:10,自引:0,他引:10  
C Q Doe  D Smouse  C S Goodman 《Nature》1988,333(6171):376-378
The central nervous system (CNS) contains a remarkable diversity of cell types. The molecular basis for generating this neuronal diversity is poorly understood. Much is known, however, about the regulatory genes which control segmentation and segment identity during early Drosophila embryogenesis. Interestingly, most of the segmentation and homoeotic genes in Drosophila, as well as many of their vertebrate homologues, are expressed during the development of the nervous system (for example, ref. 3). Are these genes involved in specifying the identity of individual neurons during neurogenesis, just as they specify the identity of cells during segmentation? We previously described the CNS expression of the segmentation gene fushi tarazu (ftz) and showed that ftz CNS expression is involved in the determination of an identified neuron. Here we show that another segmentation gene, even-skipped (eve), is expressed in a different but overlapping subset of neurons. Temperature-sensitive inactivation of the eve protein during neurogenesis alters the fate of two of these neurons. Our results indicate that the nuclear protein products of the eve and ftz segmentation genes are components of the mechanism controlling cell fate during neuronal development.  相似文献   

5.
6.
N H Patel  E E Ball  C S Goodman 《Nature》1992,357(6376):339-342
The development of Drosophila is typical of the so-called long germband mode of insect development, in which the pattern of segments is established by the end of the blastoderm stage. Short germband insects, such as the grasshopper Schistocerca americana, by contrast, generate all or most of their metameric pattern after the blastoderm stage by the sequential addition of segments during caudal elongation. This difference is discernible at the molecular level in the pattern of initiation of the segment polarity gene engrailed, and the homeotic gene abdominal-A (ref. 5). For example, in both types of insects, engrailed is expressed by the highly conserved germband stage in a pattern of regularly spaced stripes, one stripe per segment. In Drosophila, the complete pattern is visible by the end of the blastoderm stage, although engrailed appears initially in alternate segments in a pair-rule pattern that reflects its known control by pair-rule genes such as even-skipped. In contrast, in the grasshopper, the engrailed stripes appear one at a time after the blastoderm stage as the embryo elongates. To address the molecular basis for this difference, we have cloned the grasshopper homologue of the Drosophila pair-rule gene even-skipped and show that it does not serve a pair-rule function in early development, although it does have a similar function in both insects during neurogenesis later in development.  相似文献   

7.
Maternal control of Drosophila segmentation gene expression   总被引:5,自引:0,他引:5  
S B Carroll  G M Winslow  T Schüpbach  M P Scott 《Nature》1986,323(6085):278-280
Several genes have been identified that are involved in establishing the segmented body pattern during development of the fruit-fly Drosophila melanogaster. These fall into several classes on the basis of the kind of alteration to the wild-type segmentation pattern observed in mutant embryos. For example, mutations of the pair-rule class, such as fushi tarazu (ftz), cause the deletion of pattern elements with a two-segment periodicity; those of the gap class, such as knirps, cause the deletion of contiguous groups of segments. The availability of antibodies against the ftz protein has allowed its spatial pattern of expression to be studied during the development of wild-type and mutant embryos. The aim of the latter kind of experiment is to investigate possible interactions between these important genes. We have recently reported that knirps mutations cause a striking alteration to the pattern of transverse stripes of ftz expression usually seen during embryogenesis. Knirps is a zygotically-expressed gene, but recently a class of maternally-active genes has been identified that causes similar defects in pattern formation. We have now investigated the pattern of ftz expression in mutants of this class and have found that while they do have features seen in knirps mutants, they also exhibit significant differences between the different mutations reflecting the distinct but overlapping domains of gene activity. These observations demonstrate that maternally-active segmentation genes regulate zygotic gene expression, and that some of their effects on ftz may be directed through the knirps gene.  相似文献   

8.
Divergent homeo box proteins recognize similar DNA sequences in Drosophila   总被引:96,自引:0,他引:96  
T Hoey  M Levine 《Nature》1988,332(6167):858-861
  相似文献   

9.
10.
Function of torso in determining the terminal anlagen of the Drosophila embryo   总被引:10,自引:0,他引:10  
The formation of the unsegmented terminal regions of the Drosophila larva, acron and telson requires the function of at least five maternal genes (terminal genes class). In their absence, the telson and acron are not formed. One of them, torso (tor), has gain-of-function alleles which have an opposite phenotype to the lack-of-function (tor-) alleles: the segmented regions of the larval body, thorax and abdomen, are missing, whereas the acron is not affected and the telson is enlarged. In strong gain-of-function mutants, the pair-rule gene fushi tarazu (ftz) is not expressed, demonstrating the suppression of the segmentation process in an early stage of development. The tor gain-of-function effect is neutralized, and segmentation is restored in double mutants with the zygotic gene tailless (tll), which has a phenotype similar (but not identical) to that of tor-. This suggests that tor acts through tll, and that in the gain-of-function alleles of tor, the tll gene product is ectopically expressed at middle positions of the embryo, where it inhibits the expression of segmentation genes like ftz.  相似文献   

11.
A regulatory cascade, initiated during the syncytial stage of embryogenesis, culminates in the striped pattern of engrailed gene expression at the cellular blastoderm stage. The early regulatory genes, for example the pair-rule genes, are expressed transiently and as their products decay a distinct regulatory programme involving segment polarity genes takes over. This late programme maintains and perhaps modifies the striped pattern of engrailed expression through interactions that may involve cell communication.  相似文献   

12.
13.
14.
15.
16.
A F Schier  W J Gehring 《Nature》1992,356(6372):804-807
A major problem in the elucidation of the molecular mechanisms governing development is the distinction between direct and indirect regulatory interactions among developmental control genes. In vivo studies have indicated that the Drosophila segmentation gene fushi tarazu (ftz) directly or indirectly autoregulates its expression. Here we describe a generally applicable experimental approach which establishes a direct in vivo interaction of the homeodomain protein ftz with the ftz cis-autoregulatory control region. In vitro studies have shown that the DNA-binding specificity of the ftz homeodomain can be changed by a single amino-acid substitution in the recognition helix (Gln 50----Lys). Whereas wild-type ftz homeodomain binds preferentially to a CCATTA motif, the mutant homeodomain (ftzQ50K) recognizes a GGATTA motif. We now find that the in vivo activity of an ftz autoregulatory enhancer element is reduced by mutations of putative ftz-binding sites to GGATTA. This down-regulatory effect is specifically suppressed in vivo by the DNA-binding specificity mutant ftzQ50K. These results establish a direct positive autoregulatory feedback mechanism in the regulation of this homeobox gene.  相似文献   

17.
S Dougan  S DiNardo 《Nature》1992,360(6402):347-350
During embryogenesis, body pattern is established in a stepwise process. After specification of the body axis, the embryo is subdivided into smaller units. Within these units, a diverse array of cell types is then generated. The subdivisions of the Drosophila embryo, called parasegments, are defined by the interface between cells expressing the homeoprotein Engrailed and cells expressing the secreted protein Wingless. We have examined the generation of cell-type diversity within parasegments by focusing on the choice of cell fate made by the engrailed (en)-expressing cells. These cells differentiate as one of two alternative cell types. We report here that this choice is mediated by wingless (wg), in a function distinct from its early role maintaining en expression. Thus, en cells exhibit different responses to the wg signal at different developmental stages. Early wg input stabilizes the subdivision of the body axis by maintaining en expression, whereas later input generates cell-type diversity.  相似文献   

18.
19.
概述了肺的组织发生,综述了调控或影响胎肺发育的相关基因或因子。肺的发育起始于从前肠内胚层发育而来的成对肺芽突起,肺芽以分支形态发生和肺特异性细胞分化的遗传预定模式侵入周围的中胚层间充质。内胚层上皮及其周围间充质成分相互作用,保证了肺的正常形态发生。肺的发育与相关基因或因子是否正常表达密切相关,发育基因的表达将顺次影响许多其它基因的表达。同时,胎肺周围环境因素的改变可以影响相关基因的表达,进而影响胎肺的发育。  相似文献   

20.
Lynch JA  Brent AE  Leaf DS  Pultz MA  Desplan C 《Nature》2006,439(7077):728-732
The Bicoid (Bcd) gradient in Drosophila has long been a model for the action of a morphogen in establishing embryonic polarity. However, it is now clear that bcd is a unique feature of higher Diptera. An evolutionarily ancient gene, orthodenticle (otd), has a bcd-like role in the beetle Tribolium. Unlike the Bcd gradient, which arises by diffusion of protein from an anteriorly localized messenger RNA, the Tribolium Otd gradient forms by translational repression of otd mRNA by a posteriorly localized factor. These differences in gradient formation are correlated with differences in modes of embryonic patterning. Drosophila uses long germ embryogenesis, where the embryo derives from the entire anterior-posterior axis, and all segments are patterned at the blastoderm stage, before gastrulation. In contrast, Tribolium undergoes short germ embryogenesis: the embryo arises from cells in the posterior of the egg, and only anterior segments are patterned at the blastoderm stage, with the remaining segments arising after gastrulation from a growth zone. Here we describe the role of otd in the long germband embryo of the wasp Nasonia vitripennis. We show that Nasonia otd maternal mRNA is localized at both poles of the embryo, and resulting protein gradients pattern both poles. Thus, localized Nasonia otd has two major roles that allow long germ development. It activates anterior targets at the anterior of the egg in a manner reminiscent of the Bcd gradient, and it is required for pre-gastrulation expression of posterior gap genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号