首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
用晶界复合损失模型分析法计算MS和MIS型CdTe多晶薄膜太阳电池的短路电流和光谱响应。结果表明,掺杂浓度对J_(sc)的影响要比对晶粒度的影响强烈得多,在低掺杂浓度(Nd=10~(14)cm~(-3))下,细小晶粒度电池的J_(sc)很接近单晶电池的水平。与以往实验结果对比,发现在相同掺杂(N_d=10~(14)cm~(-3))和晶粒度(2R=1μm))下,计算值与测量值相当一致。  相似文献   

2.
根据a-Si_(1-x)Ge_x:H材料的特性和Eg与μ_p随X增大而下降的实验数据,采用:α=β~2(hv-Eg)~2/hv关系和数字积分方法,对由Egmax=1.85ev和Egmin=1.45ev所构成的能隙梯度化nip a-Si太阳电池作了分析和计算。结果表明,在假定非掺杂i层的τ_p不随X作显著变化的条件下,厚为1μ的i层中产生的空穴得以充分收集,在AM1下产生了29mA/cm~2的Jsc。采用Jf=Jrg(即二极管暗电流等于耗尽区复合电流)计算转换效率,得到了η=26.2%的理论极限值,用填充因子FF=0.7和平均反射率R=10%对理想条件下得到的理论极限值作修正,得到了a-Si太阳电池的有效面积效率η_e≈20%。  相似文献   

3.
本文首次运用Rothwarf的晶界复合损失模型及其修正因子分析和计算p—n结类型多晶Si太阳电池的光电流和短路电流。导出多晶Si少子有效寿命τ*和扩散长度L*与晶粒度和晶界表面态密度的关系式,根据多晶Si表面态密度的测量数据算出各晶粒度下的τ*和L*,并用它们计算多晶Si电池的二极管暗电流。在上述基础上进一步计算10μ和25μ厚的n+—p和n+—p—p+两种多晶Si太阳电池的效率,得到如下的主要结果和结论。 1.在大晶粒度下10μ和25μ厚电池的Jsc(或η)之间的差别显著,当晶粒度变小时,这种差别不断缩小,而当晶粒半径R=10μ时,无论是n+--p或n+—p—p+类型,两种厚度电池的Jsc(或η)之间的差别同时消失。值得注意的是,有关Jsc和η变化的上述特点也出现在Lanza等用数字计算法解连续方程所得的严格计算结果中。这说明我们采用的分析和计算方法也能象严格数字计算法那样较准确地反映和描述多晶Si太阳电池内部载流子的收集与复合情况,另一方面数字计算法本身难以为其结果中所出现的上述特点提供明确物理解释。而用晶界复合损失模型及其修正因子却能给以清晰地说明。这也许是本方法的优点之一。 2.发现我们计算的Jsc和η随晶粒度而增长的规律显著不同于Hovel的结果。Hovel的Jsc从R=O.1μ开始明显上升,并在尺=10μ达最大值(即单晶水平)。而我们的Jsc和η从尺>1μ开始明显上升,但直到R=500μ还未完全达到最大值。用巳有多晶Si电池在各晶粒度下的Jsc测量数据与上述两种计算结果和规律对照,发现我们的结果和规律更符合实际,因而可作出初步判断;即我们所采用的分析计算方法比Hovel的方法有更大的合理性。  相似文献   

4.
本文计算了晶粒尺寸对多晶 Si MIS(Al/SiO_2/p—si)太阳电池短路电流和 AM_1效率的影响。其中利用了 Rothwarf 的晶界复合模型,Green 的少子 MIS 隧道二极管电流公式和 Soclof 的等效扩散长度.对于30μm 厚和晶粒度300μm 的电池,本征效率为12%,在表面反射加电极复盖引起的光损失占14%的条件下,可能达到的效率为10%;对于200μm 厚和1.2毫米晶粒度的电池,本征效率为16%,可能达到的效率为13%。  相似文献   

5.
本文根据半导体材料的性能参数对5μm厚度GaP/CuInS_2异质结单晶和多晶薄膜太阳电池在各种掺杂浓度下的光伏特性作了较严格的分析与计算。要计算中具体考虑到耗尽区密度W(或光电压V)的变化以及内表面复合损失对光电流J_L的影响,此外还用晶界复合损失模型计算了晶粒度对光电流及光伏特性的影响。发现存在一个最佳化的CulnS_2掺杂浓度Na_(max),对于单晶和R=4μm的多晶电池,Na_(max)=10~(16)/cm~3,相应的最大转换效率η分别为16.2%和15.2%。  相似文献   

6.
采用磁控溅射Cu、Sn、Zn金属单质靶制备铜锌锡(CZT)金属预制层,在220℃下合金,然后在高温610℃硫化配合低速升温工艺对CZT前驱体进行退火,制备出晶粒尺寸为1~2μm的Cu_2ZnSnS_4(CZTS)薄膜.利用X射线衍射仪(XRD)、扫描电镜(SEM)、能谱仪(EDS)对薄膜样品进行结构、表面形貌和组分表征.最后沉积缓冲层、ZnO窗口层,蒸镀Al电极,制备出CZTS薄膜太阳电池,测量得到电池开路电压(V_(oc))为574 mV,短路电流密度(J_(sc))为8.98 mA/cm~2,填充因子(FF)为37.8%,电池转换效率为1.95%.  相似文献   

7.
文章运用美国宾州大学发展的AMPS程序模拟计算了n--型纳米硅(n^ --nc—Si:H)/p--型晶体硅(p--c—Si)异质结太阳电他的光伏特性。结果显示,界面缺陷态是决定电池性能的关键因素,显著影响电池的开路电压(Voc和填充因子(FF)。计算得到了这种电池理想情况下(无界面态、有背面场、正背面反射率分别为0和1)的理论极限效率ηmax=31.17%(AM1.5100MW/cm^2 0.40--1.10μm波段)  相似文献   

8.
用隧道-复合模型对n-ZnO/p-CuInSe2多晶异质结薄膜太阳电池的光电流和转换效率进行了理论计算,考虑到在多晶材料中的晶界复合损失,引入修正因子,并用Rothwarf的晶界复合模型进行修正.对晶粒半径R为1μm的电池进行计算,得到电池的短路电流密度为35.4mA/cm2,开路电压为0.42V,转换效率为10.1%.理论计算和实验结果基本一致.  相似文献   

9.
本文研究N~ /p硅常规电池受不同能量与不同剂量高能电子辐照前、后性能参数的变化.实验与计算结果一致说明短流电流(I_(sc)),开路电压(V_(oc)),光电转换效率(η)随电子辐照能量与剂量的增加而下降.由电池的内部参数S_F/D_p,L_p,L_m等具体数值的改变,表明电池的前表面复合速度(S_F)增大,N~ 区及P区内少子扩散长度L_p与L_n变短,在1MeV、10~(16)e/cm~2的高能电子辐照后,基区中L_n下降到原来的2.5%,这是导致电池性能下降的主要原因.  相似文献   

10.
【目的】研究p-Si衬底掺杂浓度对InGaN/Si异质单结太阳电池性能的影响,为制备高效太阳电池提供理论基础。【方法】将器件的n-InGaN掺杂浓度固定为10~(16 )cm~(-3),在改变p-Si衬底掺杂浓度N_A的情况下,采用一维光电子和微电子器件结构分析模拟软件(AMPS-1D)对InGaN/Si异质单结太阳电池器件的各项性能参数进行模拟。【结果】随着掺杂浓度N_A的升高,电池的电流密度J_(SC)和填充因子FF随之升高,当到达一定高的掺杂浓度范围时(N_A5.00×10~(17)cm~(-3)),J_(SC)基本保持不变,约为28.12mA/cm~2,FF保持在0.85左右且变化不大。开路电压V_(OC)和光电转换效率E_(ff)与掺杂浓度的大小呈正相关关系,随着N_A的增大,V_(OC)、E_(ff)缓慢增大。【结论】高掺杂浓度下的太阳电池具有较好的光电转换效率。低掺杂浓度的太阳电池光电转换效率较低,这是因为其对应的尖峰势垒高度和宽度均较大,影响了光生载流子的输运。  相似文献   

11.
用隧道-复合模型对n-ZnO/p-CuInSe2多晶异质结薄膜太阳电池的光电流和转换效率进行了理论计算,考虑到在多晶材料中的晶界复合损失,引入修正因子,并用Roth-warf晶界复合模型进行修正。对晶粒半径R为1μm的电池进行计算,得到电池的短路电流密度为35.4mA/cm^2,开路电压为0.42V,转换效率为10.1%。理论计算和实验结果基本一致。  相似文献   

12.
运用AMPS-1D软件对n-Mg_2Si/p-Si异质结太阳电池进行模拟,依次讨论了Mg_2Si层厚度、掺杂浓度和温度对电池性能的影响。结果表明:随着Mg_2Si层厚度的增加,短路电流和转换效率均有较大提高;开路电压也略有升高。随着温度升高,短路电流逐渐升高,转换效率、开路电压及填充因子均不断降低。室温下,Mg_2Si层轻掺杂时的掺杂浓度在5×10~(19)cm~(-3)处,转换效率达到最大值5.518%。而同样条件下Mg_2Si层重掺杂时的转换效率更高,当掺杂浓度达到10~(21)cm~(-3)后,转换效率最大值为11.508%,填充因子最大值为0.868。  相似文献   

13.
采用光学显微镜、扫描电镜、能谱分析、透射电镜和X线衍射分析等试验手段,研究升温速率对1933铝合金铸锭均匀化显微组织的影响.研究结果表明;合金铸态中主要存在α(Al)+η(MgZn2)非平衡共晶组织、AlZnCu相和AlCuFe相;均匀化处理后共晶组织被消除,η相溶解,合金中残留有AlZnCu相和AlcuFe相;合金经465℃/24 h、升温速率为200℃/h均匀化处理后,晶界附近存在一个明显的无A13Zr粒子析出带(DFZ),宽度为3~5 μm,晶粒中心Al3Zr粒子的密度较小,约为120个/μm3,粒子尺寸较大,半径约为15 nm;均匀化慢速升温(20℃/h)将无弥散析出区(DFZ)的宽度减小到0.5μm,晶内Al3Zr粒子分布更弥散细小,粒子半径为10 nm,粒子密度约为400个/μm3.  相似文献   

14.
本文运用晶界复合损失模型,分析计算了晶粒度和厚度对背面扬(Sn=0)和欧姆接触(Sn=∞)的MIS Schottky势垒多晶Si薄膜太阳电池光电流和短路电流的影响,并采用Green提出的少子隧道MIS二极管暗电流J_f公式,算出各种条件下的Voc和η。结果表明,用背面场代替欧姆接触能显著提高多晶Si太阳电池的Jsc、Voc和η,尤其在厚度较薄的条件下,这种提高更加显著,使得背面场MIS Schottky势垒多晶Si太阳电池在相当薄的厚度和不太大的晶粒度下,也能得到较高效率。这意味着在Schottky势垒多晶Si太阳电池中加背面场容易同时满足节省材料和工艺费用,以及获得较高效率等方面的综合要求,对降低太阳电池电功率成本有一定价值和意义。  相似文献   

15.
为了增进无机半导体和有机聚合物半导体之间的相容性,优化电池的光电性能,基于一维无机TiO2纳米棒有序阵列和有机聚合物PCPDTBT,构建了一种结构为TiO2/PCPDTBT的杂化太阳电池。用一种有机三苯胺类两亲分子来调控此无机、有机材料的两相表/界面性质。采用SEM,TEM,XRD,EDS,UV-vis,PL等方法对杂化膜电极进行表征。电池性能测试表明,表/界面修饰后太阳电池的性能得到提高,电池效率η为0.81%;开路电压衰减测试表明,异质结表/界面经修饰后,杂化太阳电池的电子寿命有所提高。因此,通过异质结表/界面修饰改善活性层的形貌结构对电池性能有重要影响。  相似文献   

16.
在TiO_2,ZnO,SnO_2三种低温电子传输层上,利用相同的钙钛矿薄膜沉积方法制备了钙钛矿太阳能电池,直接比较了三种电池的性能优劣,并从薄膜形貌、光学和电学性质等方面分析了造成性能差异的可能原因。结果表明:基于SnO_2的钙钛矿太阳能电池由于高的短路电流密度(J_(SC)=19.13 mA/cm~2)和填充因子(F_f=72.69%),具有最高的能量转换效率(P_(CE)=14.74%),基于TiO_2的电池次之(11.94%),ZnO基电池效率最低(9.03%).所制备的低温SnO_2基钙钛矿太阳能电池与基于常规高温TiO_2的钙钛矿电池具有相近的能量转化效率,从而使低温SnO_2电子传输材料在柔性、低成本钙钛矿电池领域展示出巨大的应用潜力。  相似文献   

17.
纳米硅(nc-Si∶H)/晶体硅(c-Si)异质结太阳电池计算机模拟   总被引:1,自引:0,他引:1  
文章运用美国宾州大学发展的AMPS程序模拟计算了n-型纳米硅(n+-nc-Si∶H)/p-型晶体硅(p-c-Si)异质结太阳电池的光伏特性.结果显示,界面缺陷态是决定电池性能的关键因素,显著影响电池的开路电压(VOC和填充因子(FF).计算得到了这种电池理想情况下(无界面态、有背面场、正背面反射率分别为0和1)的理论极限效率ηmax=31.17%(AM1.5100MW/cm2 0.40~1.10μm波段).  相似文献   

18.
在采用α-Si_(1-x)Ge_x:H材料设计与计算多能隙Pin多重结α-Si太阳电池的过程中,我们提出了一种不同于Marfaing的更加合理的方法。在满足d(i层厚度)=ω(耗尽区宽度)和空穴漂移长度δp>ω,也就是S_(Ri)(收集效率)=1的条件下,总厚度为0.84μ的多能隙pin二重结α-Si电池在AM_1下的理论极限效率接近于20%,当总厚度减为0.55μ时,还保持在18%以上。  相似文献   

19.
低温下,采用水热法,在金属Zn片上制备了Zn/ZnO纳米线电极。扫描电镜(SEM)、透射电镜(TEM)分析结果表明,该ZnO为垂直于基底生长的纳米线结构,并由X射线衍射(XRD)分析得到进一步确认;在该Zn/ZnO电极上旋涂聚3-已基噻吩(P3HT)得到Zn/ZnO/P3HT杂化电极,紫外可见吸收光谱(UV-vis)表明P3HT的存在拓宽了电极的光响应范围;对Zn/P3HT和Zn/ZnO/P3HT电极进行荧光光谱(PL)测试,发现ZnO/P3HT杂化膜的荧光发射强度降低,说明光生激子在复合前即在ZnO/P3HT异质结界面处发生分离。在此基础上,制作了结构为Zn/ZnO/P3HT/PEDOT:PSS/ITO的柔性杂化太阳电池,于模拟太阳光(100mW/cm2)照射下测试该电池的光电性能:电池的开路电压Voc为334mV,短路电流密度Jsc为1.72mA/cm2,填充因子FF为0.39,光电转换效率η为0.22%。  相似文献   

20.
以TiO_2/钙钛矿(PVSK)/P3HT的n-i-p型钙钛矿电池作为研究对象,研究了TiO_2薄膜退火温度对TiO_2薄膜的结晶性、基于此的钙钛矿薄膜的形貌以及光伏器件性能的影响,比较了P3HT的掺杂以及不同批次P3HT材料对钙钛矿太阳能电池器件性能的影响。结果表明:TiO_2薄膜的退火工艺及P3HT的批次对器件性能影响较大。TiO_2薄膜的制备工艺设为退火温度为300℃,退火时间为45min,提高TiO_2的退火温度到500℃,钙钛矿太阳能电池的效率可提高到11.27%.通过优化钙钛矿薄膜厚度为190nm,制备得到光电转换效率为6.77%的钙钛矿薄膜光伏电池。基于低温TiO_2为电子传输层、掺杂P3HT为空穴传输层的器件性能为开路电压VOC=0.98V,短路电流J_(SC)=19.94mA/cm~2,填充因子f_F=0.42,转换效率η(PCE)=8.18%.TiO_2电子传输层和P3HT空穴传输层的系统优化对制备高性能n-i-p结构钙钛矿电池具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号