首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成了Cu2(oxheel)双核铜配合物;研究了它作为过氧化物酶在缓冲溶液中以及在两种不同的表面活性剂胶束中催化过氧化氢氧化苯酚的反应;建立了金属配合物催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度、体系pH和胶束微环境对催化反应速率的影响.并对双核铜配合物催化苯酚氧化反应的机理进行了讨论。  相似文献   

2.
双核铜配合物催化过氧化氢氧化苯酚的研究   总被引:1,自引:0,他引:1  
合成了Cu2(oxheel)双核铜配合物;研究了它作为过氧化物酶在缓冲溶液中以及在两种不同的表面活性剂胶束中催化过氧化氢氧化苯酚的反应;建立了金属配合物催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度、体系pH和胶束微环境对催化反应速率的影响.并对双核铜配合物催化苯酚氧化反应的机理进行了讨论。  相似文献   

3.
合成和表征了一种双核铜配合物Cu2(oxheel).该配合物和胶束形成的金属胶束被作为人工过氧化物酶用于催化过氧化氢氧化苯酚的反应.研究了双核铜配合物金属胶束催化苯酚氧化反应的机理,并建立了金属胶束催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度和体系酸度对催化反应速率的影响.  相似文献   

4.
合成和表征了一种双核铜配合物Cu2(oxheel).该配合物和胶束形成的金属胶束被作为人工过氧化物酶用于催化过氧化氢氧化苯酚的反应.研究了双核铜配合物金属胶束催化苯酚氧化反应的机理,并建立了金属胶束催化苯酚氧化的动力学数学模型;讨论了过氧化氢/催化剂摩尔比、体系温度和体系酸度对催化反应速率的影响.  相似文献   

5.
提出了金属配合物催化对苯二酚(HQ)氧化反应的动力学数学模型,按照文献方法合成了两种不同配体的金属铜配合物,研究了它们在水溶液中以及在阳离子表面活性剂CTAB胶束中催化过氧化氢氧化HQ的反应,研究结果表明,提出的动力学模型具有合理性,胶束微环境对金属铜配合物催化过氧化氢氧化HQ的反应有较大的影响。  相似文献   

6.
高连周  张廉奉 《河南科学》1999,17(4):365-369
室温下,在配体存在下,通过氧化加成反应合成了双核铜配合物「Cu(C6H5COO)2(L)」2,L=C5H5(NO(1),4-methylpyridine(2),2,6-bimethylpyrdine(3),「Cu(C6H5COO)4(dppe)」(4),dppe=双二苯基膦乙烷,以元素分析、电导,热重-差热分析、红外光谱,磁图二色性等对配合物进行了表征,并经X-射线单晶结构分析,确定了配合物(1)  相似文献   

7.
研究了自制的柠檬酸铁配合物(Cit-Fe(Ⅲ))对苯酚的催化降解作用。在室温(20℃)和初始pH值7的条件下,进行了反应时间、催化剂配比和浓度、过氧化氢用量等影响因素试验,降解苯酚的最佳条件为催化剂配比为1﹕1,浓度为9 mM和H2O2浓度为1.8 g/L,反应20 min后,50 mg/L苯酚溶液的降解率达到93%。Cit-Fe(Ⅲ)具有良好的催化效果。  相似文献   

8.
苯与过氧化氢直接催化氧化合成苯酚   总被引:9,自引:0,他引:9  
研究苯一步催化氧化合成苯酚的新方法,以Fe-Cu-Mn-O/海泡石为催化剂,双氧水及添加剂为氧化剂。探讨添加剂性质、催化反应温度及双氧水浓度对反应过程的影响规律,并提出催化氧化的反应机理。  相似文献   

9.
在温和条件下,用水杨醛缩氨基酸希夫碱异双核配合物作为催化剂,以分子氧为氧化剂,研究了对环己烯、1 辛烯、1 癸烯的选择氧化反应,结果表明它们均有良好的催化活性.  相似文献   

10.
羧酸桥联双核铜配合物的合成与表征   总被引:3,自引:3,他引:0  
本文以金属铜粉为起始原料,利用氧化加成反应,合成了6个新的羧酸桥联双核铜配合物:[Cu(C6H5COO)2L]2[L=2—氨基吡啶(1),2—甲基吡啶(2),2,4,6—三甲基吡啶(3),三苯基氧化膦(4),喹啉(6)]和配合物(5)[Cu2(C6H5COO)4(dppe)](dppe=Ph2PCH2CH2PPh2),通过元素分析、磁化率、红外光谱、分子量测定、电导测定对配合物进行了表征,并经四圆衍射方法测定了配合物4的晶体结构.  相似文献   

11.
Schiff碱钴(Ⅱ)配合物金属胶束催化过氧化氢氧化苯酚研究   总被引:1,自引:0,他引:1  
合成和表征了两种Sehiff碱Co(Ⅱ)配合物(CoL1和CoL2),并与表面活性剂(LSS)形成金属胶束用于模拟过氧化物酶催化过氧化氢氧化苯酚.对比研究了两种配合物的催化活性; 研究了苯酚催化氧化的机理;讨论了反应体系酸度、配合物结构及反应温度对模拟酶催化苯酚 氧化速率的影响.结果显示:两种Schiff碱钴(Ⅱ)配合物形成的金属胶束作为模拟过氧化物酶 都具有很好的催化活性并同天然酶具有相同的催化特征.  相似文献   

12.
研究了由双核铜配合物和表面活性剂组成的金属胶束催化PNPP水解的动力学和机理。提出了含两个水分子的双核铜配合物催化PNPP水解的动力学数学模型。结果表明:金属胶束催化PNPP水解是分子内反应;两个铜离子在催化PNPP水解过程中具有协同效应;由草酰胺桥联双核铜配合物与表面活性剂组成的金属胶束在催化PNPP水解中表现出高的活性。  相似文献   

13.
本综述了97年以来大环双核配合物在合成和性质研究方面的进展。  相似文献   

14.
异羟肟酸过渡金属配合物的合成和催化氧化性能研究   总被引:2,自引:1,他引:1  
合成了一系列异羟肟酸L^1H~L^6H及其过渡金属配合物M(L^1)2~M(L^6)2(M=Cu(Ⅱ),Co(Ⅱ),并以元素分析、IR、^1HNMR和MS进行了表征,考查了它们的铜(Ⅱ)配合物对异丙苯氧化生成氢过氧化异丙苯(CHP)的催化性能,与其未取代(R=H)的对照样Cu(L^7)2比较,讨论了配体芳环上取代基及其末端基团对其催化性能的影响。  相似文献   

15.
以苯并咪唑为原料合成氮杂卡宾(NHC)前体1,3-双(2-羟基-3,5-二叔丁基苄基)苯并咪唑氯化物,再与CuCl2配位制备NHC-Cu(Ⅱ)配合物,分别采用紫外-可见吸收光谱、红外光谱、X射线电子能谱和质谱对该配合物进行了结构表征.将该配合物(1%(mol))作为催化剂,以叔丁基过氧化氢(TBHP)为氧化剂,在353 K的乙腈溶液中对乙苯以及其衍生物进行催化氧化反应,结果表明,乙苯的α-H被选择性氧化,首先生成苯乙醇,而后被继续氧化为苯乙酮,乙苯在反应12 h后的转化率为68%,苯乙酮的选择性为90%,苯环上连有吸电子基时,催化氧化效果更佳.  相似文献   

16.
分解水制备氢气是解决能源短缺问题的理想方法之一。然而,氧化半反应是水分解过程中的瓶颈问题。研制高效、稳定的水氧化催化剂是解决问题的关键。铁金属具有低成本和无毒性的优点,因而以铁金属为基础的水分解催化剂特别引人注目。本文分别采用化学、电化学方法研究了氧桥联的双核铁金属配合物(1)[Fe_2(μ-O)(L)_4(H_2O)_2](ClO_4)_4(L=4,4′-二甲基-2,2′-联吡啶)对水氧化反应的催化性能。实验结果表明,在pH为3.00~7.50的醋酸钠—醋酸缓冲体系中,以过硫酸氢钾复合盐作为氧化剂,配合物(1)表现出较好的催化活性,最大转换数(TON)可达到89。同时,电化学催化研究表明配合物(1)表现出一定的催化水氧化行为,起始电位在~1.20 V vs.Ag/AgCl。  相似文献   

17.
研究了由双核铜配合物和表面活性剂组成的金属胶束催化PNPP水解的动力学和机理.提出了含两个水分子的双核铜配合物催化PNPP水解的动力学数学模型.结果表明金属胶束催化PNPP水解是分子内反应;两个铜离子在催化PNPP水解过程中具有协同效应;由草酰胺桥联双核铜配合物与表面活性剂组成的金属胶束在催化PNPP水解中表现出高的活性.  相似文献   

18.
氨基酸希夫碱铜配合物的合成及催化烯烃氧化性能   总被引:9,自引:0,他引:9  
合成了苯丙氨酸水杨醛希夫碱铜配合物, 对其进行了热重分析、红外光谱分析, 测定了金属铜的含量, 初步研究了铜配合物对烯烃的催化氧化性能  相似文献   

19.
TS分子筛的催化氧化性能研究:Ⅲ.苯酚氧化制苯二酚   总被引:4,自引:0,他引:4  
研究了自合成的钛硅分子筛(TS-1)对H2O2氧化苯酚制苯二酚反应的催化活性。对反应的温度、时间、催化剂用量、酚:H2O2等因素进行了考察:在催化剂用量为苯酚的10%、酚:H2O2(mol)为3:1时,经57℃/6h反应,H2O2的转化率和对产物苯二酚的利用率可达90%和80%,还观察到,分子筛的晶粒大小对苯酚的氧化活性影响较大,大晶粒催化剂的内表面利用率较低,从而影响催化活性。  相似文献   

20.
两种N,N,N',N'-四(2'-苯并咪唑甲基)-1,4-二乙氨基乙二醚(EGTB)铜(I)双核配合物[Cu_2(EGTB]X_2(X=Cl ̄-BF ̄-_4)已合成.电子光谱和荧光发射谱表明它们可与分子氧结合,氧合-脱氧循环可重复多次;CV法测得配合物氧化还原电势,表明CU(Ⅱ)配合物(氧化型)有超氧化物歧化酶(SOD)活性,定性检测还表明氧化型有过氧化氢酶(CAT)性质,能分解H_2O_2放出O_2气.首次发现和证明了同一配体不同氧化态配合物分别具有载氧、SOD及CAT活性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号