共查询到18条相似文献,搜索用时 93 毫秒
1.
冰蓄冷系统基于负荷预测和优化的实时控制 总被引:1,自引:0,他引:1
首先基于西安地区某办公楼空调季节的数据,进行了逐时温度和冷负荷的预测。然后,讨论了温度预测对负荷预测,负荷预测对离线优化的影响。结果表明,人工神经网络冷负荷预测的准确度不受异常天气情况的影响;而负荷预测的准确度直接影响非线性优化的结果;在线修正是至关重要的。最后,给出了实时控制中负荷预测及离线优化结果在线修正的实例。 相似文献
2.
预测参数的选择与建筑物逐时冷负荷的预测 总被引:4,自引:0,他引:4
利用逐步回归分析进行了预测参数的选择和建筑物逐时冷负荷的预测,并将其与采用相同数据集的神经网络(ANN)的冷负荷预测结果进行了对比分析。 相似文献
3.
利用逐步回归分析进行了预测参数的选择和建筑物逐时冷负荷的预测,并将其与采用相同数据集的神经网络(ANN)的冷负荷预测结果进行了对比分析。 相似文献
4.
基于灰色系统和人工神经网络的中长期电力负荷预测 总被引:5,自引:0,他引:5
利用灰色预测需要样本数据量少、建模过程简单的特点,对中长期电力负荷进行前期预测,结合人工神经网络对大量非线性、非精确性规律具有自适应和自学习能力的优点,在考虑经济因素的前提下对输入数据进行了预处理,采用改进的BP算法最终得出了预测结果.文中的算例表明了该方法是可行且有效的. 相似文献
5.
为了正确选择区域供冷系统设计负荷并优化其主机运行策略,对某区域供冷系统的逐时实际冷负荷变化规律及数值预测进行研究。通过对该区域供冷系统冷冻水供回水温度及流量进行实测,得到并分析实际逐时冷负荷;通过增加输入层数据,建立改进人工神经网络负荷预测模型并对预测值及其误差进行分析。研究结果表明:区域供冷系统在各负荷区间运行时间分布较均匀;在实测期间,系统在高负荷区间的运行时间所占比例为17.5%,最低负荷区间的运行时间所占比例为13.5%,其他负荷区间运行时间比例为15%~20%,这与单区域供冷系统负荷越大则运行时间越短的特点完全不同;并且区域供冷系统连续24h工作,实测日最小运行负荷仅为当日最大实际负荷的11.8%,逐时负荷变化范围大,这说明区域供冷系统更应注意机组容量选型和运行策略优化;由经改进人工神经网络算法得出的负荷预测值与实际值较吻合,其相对误差受用冷区域功能与特点的影响。 相似文献
6.
电力系统短期负荷组合预测 总被引:2,自引:0,他引:2
基于三种单一预测模型,给出了电力系统短期负荷组合预测模型。为求解固定权系数,引入智能优化算法求解。通过计算结果比较表明,组合预测法具有较强的实用性和优越性。 相似文献
7.
针对BP神经网络的固有缺陷,如训练速度慢,易收敛于局部极小点及全局搜索能力弱等,改进了传统BP算法,并采用遗传算法设计和优化神经网络结构参数,在此基础上建立了基于遗传算法的人工神经网络负荷预测模型,预测仿真结果表明,本文所提出的方法在预测精度和收敛速度方面均得到了改进。 相似文献
8.
基于人工神经网络的实时短期负荷预测系统 总被引:2,自引:0,他引:2
应用人工神经网络设计短期电力负荷预测系统,利用广州电网的负荷数据进行仿真,分别作出提前1小时和未来24小时的整点负荷预测,获得了比较满意的预测精度,显示出人工神经网络应用于短期电力负荷预测的良好前景。由于建立小时模型,改进了训练样本集的选取办法及采用高效率的LM训练算法,使ANN的训练速度大大加快,形成可以实时训练和预测的ANN-STLF系统。 相似文献
9.
一种基于模糊逻辑和神经网络的电力负荷预测方法 总被引:12,自引:2,他引:12
应用模糊理论、人工神经网络等智能技术,确定了有效的电力系统短期负荷预测方法,其中着重考虑了天气因素对电网负荷的影响,并开发了实用化的负荷在线预测软件,该软件是基于Windows的应用程序,具有开放式的结构和友好的人机接口,可用于每小时或每15min的负荷预测,测试结果表明,该方法具有良好的预测精度。 相似文献
10.
介绍了批量处理时间序列数据情况下,基于台区负荷特性聚类的样本自适应反向传播神经(BP)神经网络预测短期电力负荷的方法,通过对历史数据的预处理、初始聚类中心的设置以及最优聚类数目的确定,建立典型日负荷曲线的聚类预测模型。基于历史数据的聚类结果及待预测日的温度、湿度、气压、风速、星期等相关参数,使用BP神经网络算法得出待预测日负荷曲线预测结果。通过实例验证,基于台区负荷特性聚类的样本自适应神经网络短期负荷预测能够得到较为准确的预测结果。 相似文献
11.
李琼 《华南理工大学学报(自然科学版)》2008,36(10)
本文建立了一种基于径向基(RBF)神经网络的建筑物空调负荷预测模型。对广州市某办公楼在夏季不同月份的逐时冷负荷,分别用RBF神经网络模型和BP神经网络模型进行训练和预测计算,发现RBF神经网络模型预测的均方根误差ΔRMSE和平均相对误差ΔMRE都仅是BP神经网络方法的64%左右。仿真结果表明径向基(RBF)神经网络具有更高的预测精度及更好的泛化能力,是建筑物空调负荷预测的一种有效方法。 相似文献
12.
基于遗传-神经网络的交通量预测 总被引:12,自引:1,他引:12
分析了遗传算法 (Genetic Algorithm,GA)和人工神经网络 (Artificial Neural Network,ANN)的优缺点 ,在此基础上提出了将遗传算法与人工神经网络有机结合起来的遗传 -神经网络预测模型 ,并将此模型用于河北省交通量预测 ,其预测结果的精度明显得到提高 ,表明遗传 -神经网络预测模型可以作为交通量预测的一种有效手段。 相似文献
13.
基于现代误差修正技术,研究小波神经网络建立的动态测量误差预测模型,以进行误差修正,提高动态测量精度,避免了传统神经网络需要人为干预网络结构参数的不足。文章介绍了建模方法,重点对大轴圆度误差测量过程中的动态测量数据进行实例分析,结果表明,该模型预测精度高,具有重要的应用价值。 相似文献
14.
针对建筑负荷预测模型特征选择工作量大、泛化能力提升难的问题,提出一种基于XGBoost-神经网络的建筑负荷特征筛选及预测方法,利用XGBoost算法训练滤波处理后的数据,基于平均绝对误差百分比MAPE确定最优特征子集,以改善模型精度和泛化能力;采用贝叶斯正则化算法训练前馈神经网络,以便能够在训练优化过程中降低网络结构复杂性,从而避免网络过拟合,进一步提升其泛化能力。针对某商业建筑的负荷预测实验结果表明,特征筛选后较筛选前模型MSE降低43.29%,有效提高了模型预测精度;分别以贝叶斯正则化和L-M算法对神经网络进行训练,前者5次试验RMSE和MAPE平均值较后者分别降低87.08%、85.33%,预测模型泛化能力得到有效提升。 相似文献
15.
为了克服传统神经网络预测方法在网络结构设计和收敛效果等方面存在的缺陷。提出了一种进行电力系统负荷预测的新算法———人工免疫算法。该算法是根据高等动物免疫系统的机理而设计的,将目标函数和一部分不等式约束条件作为抗原,将搜索空间的解作为抗体,依据抗原与抗体的结合力以及抗体之间的结合力对解进行选择,通过抗体之间的相互激励作用提高了最优点附近的搜索效率,通过记忆细胞对抗体的抑制作用有效地摆脱局部最优点。应用该模型于阜新地区负荷预测的实例中,结果表明,该模型与传统的神经网络预测方法相比具有较强的自适应能力和较好的效果。 相似文献
16.
基于聚类的神经网络及其在预测中的应用 总被引:5,自引:0,他引:5
提出了一种基于聚类的神经网络算法,可以很好解决大样本情况引起的网络结构复杂、收敛性和泛化能力差等神经网络的固有问题.算法采用聚类算法为分类器,进行模式空间分解,以分类后的模式子空间为各样本集合,用神经网络集学习,最后根据重力模型计算检测样本对各样本子集的隶属度,整合各子空间的输出结果.通过实验对比表明该算法精度较高,容错性好. 相似文献
17.
非线性时间序列的重构及预测 总被引:1,自引:0,他引:1
高知新 《辽宁工程技术大学学报(自然科学版)》2004,23(1):138-140
采用自适应前馈网络算法(AFN)进行非线性时序预测,对网络结构设计进行详细的探讨,并应用该方法对经典非线性时间序列数据进行预测,与传统预测方法(TAR)比较,结果证明此种方法具有较好的效果,网络的结构得到了简化。不仅满足了误差目标的要求,而且提高了网络的推广能力。且AFN方法可以对时间序列数据间的关系给出一种基于贡献率的解释。 相似文献
18.
基于人工神经网络城市交通流量智能预测的研究 总被引:5,自引:0,他引:5
通过对我国目前城市交通情况的分析.说明交通拥挤和流量大小息息相关,因此对城市交通流量进行预测具有重要的意义。目前应用于城市交通流量智能预测的人工神经网络模型主要有线性网络、BP网络、反馈网络等。经过综合分析而采用了线性网络对城市交通流量进行预测,其优点主要表现在结构简单,实用方便,反应速度快,实时性强。根据城市交通的具体情况,对城市交通流量的预测模型进行了仿真。其仿真结果表明所采用的线性神经网络能够用于城市交通流量的预测。 相似文献