首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 960 毫秒
1.
<正> 本文讨论扰动矢量方程 dx/dt=f(t,x) (1) 其中:x=(x_1,x_2,……,x_n)~T是R~n空间的矢量,f(t,x)是定义在I×R~n空间 0≤t<+∞, ‖x‖<+∞ (2)上的n维连续矢量函数,f(t,0)=0,满足解的存在及唯一性条件,并且假定解可以开拓到t=+∞。  相似文献   

2.
无异状点的一类自映射—中心和深度   总被引:3,自引:0,他引:3       下载免费PDF全文
设I =[0 ,1],f∈C0 (I,I) ,在f无异状点的条件下 ,周作领给出了f的中心等于f的周期点集的闭包 ,f的深度不大于 2。设f∈C0 (I×I,I×I) ,如果f是可降映射 ,又f无异状点 ,利用可降映射的特征和笛卡尔积及其闭包运算 ,将一维自映射的情形向二维自映射进行推广 ,并给出了这类自映射的中心和深度 ,即f的中心为P(f) ,f的深度为 1或 2。  相似文献   

3.
利用上下解的单调迭代技巧讨论了Banach空间二阶积-微分方程两点边值问题-u″(t)=f(t,u(t),Su(t)),t∈I,u(0)=u(1)=θ解的存在性.其中f∈C(I×E×E,E),I=[0,1].在非线性项f满足一定的非紧性测度条件和单调性条件下,利用相应的线性方程解算子的谱半径,通过非紧性测度的精细计算,获得了其在上下解之间的最小、最大解的存在性以及在上下解之间解的唯一性.  相似文献   

4.
本文使用文[1]的有关符号和概念.考虑滞后型泛函微分方程x=f(t,x_t) (1)x∈R~n,x_t∈C=C([-r,0],R~n),r>0,f(t,φ):Ω→R~n”连续,Ω是 R×C 中的开子集,且设 f_φ~″和 f_φ~′在Ω中连续定义(?):[-r-α,0]→R~n,0<α相似文献   

5.
Banach空间微分方程广义弱解的局部存在性   总被引:1,自引:1,他引:0  
在弱完备的实Banach空间E中考虑微分方程的Cauchy问题 :x′(t) =f(t,x(t) ) , x( 0 ) =x0 . (cp)其中x0 ∈E ,f:I×D→E(D E ,I R1 .通过使用弱非紧型条件给出 (cp)的广义弱解的局部存在性 ,完善 [1]、[2 ]中的结果  相似文献   

6.
设R~n为n维空间,f(t,x,u)是R~+×R~(n+1)上的实连续函数。本文讨论 u_u-△u+λu_1+μu=f(t,x,u),λ,u>0 (1) u(0,x)=u_0(x),u_1(0,x)=u_1(x).x∈R~n (2)的整体解的存在性与唯一性。定义x_s及|||·|||_s为下列空间及其相应的范数  相似文献   

7.
设R~n是n维欧几里德空间(n≥2),D=R~n是R~n中的一个真子域,对于x,y∈D,0log1/(1-c),存在F:R~n→R~n是一个拟共形映射,满足如下条件: 1) K_D(x,F(y))≤log1/(1-c) 2) F:R~n\D→R~n\D是一个恒等映射 3) logK_1(f)≤2/cK(x,y)  相似文献   

8.
偶映射定理     
受奇映射定理的启发,本文证明了连续偶映射的Brouwer度为偶数,即偶映射定理.(H)设D(?)R~n是有界对称含0的开集,f:D→R~n是连续偶映射(f(x)=f(-X),(?)X∈D)使O(?)f((?)D)有如下主要结果:1~0如假设(H)满足,则deg(f,D,0)是偶数.2~0如假设(H)满足,R~n的维数n为奇数且f(x)+(λ-1)x≠0,(?)x∈D和λ>1,则f在(?)D上必有零点.3~0如假设(H)满足但R~n的维数n为奇数,则存在y∈(?)D和λ>0(或λ<0)使f(y)=λy.我们进一步按上述内容对全偶连续映时进行了讨论.映射f:D→R~n是全偶的,只要f((-1)~(a1)x_1,…(-1)~(an)x_n)=f(x_1,…x_n),(?)(a_1,…a_n)∈δ_n(0,1),这里δ_n(0,1)={(a_1,…,a_n)|a_i=0或1,(?)i∈{1,2,…,n}}.  相似文献   

9.
§0.导引 Lions考虑过空间的内插性质,得到如下结论: 空间W_p~(l a)(R~n),0相似文献   

10.
用Leray-Schauder不动点定理,讨论完全n阶边值问题:{-u~((n))(t)=f(t,u(t),u′(t),…,u~((n-1))(t)), t∈[0,1],u~((i))(0)=0, i=0,1,2,…,n-2,u~((n-1))(1)=0烅烄烆解的存在性,其中f:[0,1]×R~n→R为连续函数.在一个允许f(t,x_0,x_1,…,x_(n-1))关于x_i(i=0,1,2,…,n-1)超线性增长的不等式条件及f(t,x_0,x_1,…,x_(n-1))关于x_(n-1)满足Nagumo型增长的条件下,得到了该问题解的存在性.  相似文献   

11.
利用连续同伦算法讨论具有形式F(x)=x f(x)的组合映射F:R~n→R~n的零点的计算,其中f是二阶连续可微映射,给出了F零点存在的一个条件,在此条件下,本文给出的算法是整体收敛的。  相似文献   

12.
Bochner-Riesz平均带权的强性求和   总被引:1,自引:0,他引:1  
设f∈L~p(R~n),1≤p≤2(n+1)/n+3,以及δ>n/p-(n+1)/2.本文证明了f在R~n上的Bochner-Riesz平均σR(f;x)满足关系式其中权函数w满足条件w(u)≥0以及1≤1/t integral from 0 to t(w(u)du≤C)(C为一绝对常数)。结论对周期情形也成立。  相似文献   

13.
利用锥上不动点定理,研究一阶常微分方程周期边值问题x'(t)+f(t,x)=0,x(0)=x(T)混合型解的存在性,其中函数f:[0,T]×R~n满足Caratheodory条件.  相似文献   

14.
在带形域Ω=R~n×(0,T)上考虑如下退化抛物型方程的Cauchy问题: u_1(x,t)—D_i(a_(il)(x,t)·D_ju)+b_1(x,t)·D_(ju)+C(x,t)·u=f(x,t),(x,t)∈Q u(x,0)=0 x∈R~n其中方程系数是Q上局部可测函数,重复指标表示从1到n求和;并且假定成立条件:  相似文献   

15.
利用 Leray- Schauder非线性抉择定理 ,在比较弱的条件 :(1 )存在 (0 ,+∞ )上的连续函数g(y)使得∫10 g(s) ds<+∞ ,且 0≤ f (t,y)≤ g(y) , (t,y)∈ (0 ,1 )× (0 ,+∞ ) ;(2 )存在正数 L>0 ,使得对于每一个 n≥ 1 ,都存在一个εn>0满足 q(t) f (t,y) >L , (t,y)∈ en× (0 ,εn]下 ,获得一维奇异 p- Laplace方程 (|y′|p-2 y′)′+q(t) f(t,y) =0 ,y(0 ) =y(1 ) =0 ,p >1的一个正解存在定理 .  相似文献   

16.
常微分系统的Robust收敛性   总被引:1,自引:1,他引:0  
结合已有研究常微分系统解的Robust稳定性和Robust耗散性的方法 ,对系统dxdt =f(t,x) (f(t,0 ) =0 ) 的扰动系统dxdt=f(t,x) +g(t,x) (f,g∈C[I×SH,Rn] ,SH {x|‖x‖ ≤H} ) ,研究了该系统具有Robust收敛性 .  相似文献   

17.
我们知道连续凸函数具有这样一个性质: 定理设f(x)是R~n上的实值连续函数,若对于任意的x_1,x_2∈R~n,都有 f(1/2x_2 1/2x_2)≤1/2f(x_1) 1/2f(x_2) (1)则f(x)必为凸函数。一般函数论教材,在论证这一性质时,大都采用哥西的巧妙证法,下面我们用反证法证明这一结论。证明:若f(x)不是凸函数,根据凸函数的定义,则至少存在两个点x_1、x_2∈R及0≤a_0≤1  相似文献   

18.
设K是一个正整数。W~k(R~n)表示所有定义在R~n内的函数f(x)〔x=(x1,x2…,xn)〕使得它和它的S(|S|=sum from j=1 to n S_j≤K)阶广义导数都属于L~2(R~n)的函数的集合。对K=n=1,设H_0(R~1)={f(x);f和它的广义导数Df属于L~2(R~1),但f=f(a、e),这里f是绝对连续函数}。这篇文章的主要结果是:H_0(R~1)=W~1(R~1)。  相似文献   

19.
一、引言近20年来,随着最优化理论的发展,为了处理非光滑函数而产生了一系列广义可微性的概念。 1963年,R.T.Rockafellar首先建立了凸函数f:R~n→R的“次梯度”,他定义f在x_0∈R~n处的次梯度为 (1.1) (?)_*~Rf(x_0)={z∈R~n|(?)h∈R~n,f(x_0+h)-f(X_0)≥}其后,他又逐步建立了这种次梯度的一般运算理论。 1973年,F.H.Clarke对于这种次梯度理论作出了重大的推广。他首先对局部Lipschitz函数f:R~n→R建立了“次微分”,然后引入了这种函数的“广义梯度”。其中在X_0∈R~n处沿方向h∈R~n的次微分  相似文献   

20.
本文研究当当n≥3时,半线性椭园型方程—△u+f(|x|,u)=h(|x|)在环域Ω={x∈R~n|0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号