首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Péterfy M  Phan J  Xu P  Reue K 《Nature genetics》2001,27(1):121-124
Mice carrying mutations in the fatty liver dystrophy (fld) gene have features of human lipodystrophy, a genetically heterogeneous group of disorders characterized by loss of body fat, fatty liver, hypertriglyceridemia and insulin resistance. Through positional cloning, we have isolated the gene responsible and characterized two independent mutant alleles, fld and fld(2J). The gene (Lpin1) encodes a novel nuclear protein which we have named lipin. Consistent with the observed reduction of adipose tissue mass in fld and fld(2J)mice, wild-type Lpin1 mRNA is expressed at high levels in adipose tissue and is induced during differentiation of 3T3-L1 pre-adipocytes. Our results indicate that lipin is required for normal adipose tissue development, and provide a candidate gene for human lipodystrophy. Lipin defines a novel family of nuclear proteins containing at least three members in mammalian species, and homologs in distantly related organisms from human to yeast.  相似文献   

2.
Flier JS 《Nature genetics》2000,24(2):103-104
Autosomal dominant partial lipodystrophy (PLD), in which regional adipose loss is coupled with insulin resistance, is strongly associated with missense mutations in LMNA, encoding lamin A/C-a component of the nuclear envelope. This finding indicates that other proteins and functions of the nuclear envelope may have bearing on disorders of adipose tissue and insulin action.  相似文献   

3.
Congenital generalized lipodystrophy, or Berardinelli-Seip syndrome (BSCL), is a rare autosomal recessive disease characterized by a near-absence of adipose tissue from birth or early infancy and severe insulin resistance. Other clinical and biological features include acanthosis nigricans, hyperandrogenism, muscular hypertrophy, hepatomegaly, altered glucose tolerance or diabetes mellitus, and hypertriglyceridemia. A locus (BSCL1) has been mapped to 9q34 with evidence of heterogeneity. Here, we report a genome screen of nine BSCL families from two geographical clusters (in Lebanon and Norway). We identified a new disease locus, designated BSCL2, within the 2.5-Mb interval flanked by markers D11S4076 and D11S480 on chromosome 11q13. Analysis of 20 additional families of various ethnic origins led to the identification of 11 families in which the disease cosegregates with the 11q13 locus; the remaining families provide confirmation of linkage to 9q34. Sequence analysis of genes located in the 11q13 interval disclosed mutations in a gene homologous to the murine guanine nucleotide-binding protein (G protein), gamma3-linked gene (Gng3lg) in all BSCL2-linked families. BSCL2 is most highly expressed in brain and testis and encodes a protein (which we have called seipin) of unknown function. Most of the variants are null mutations and probably result in a severe disruption of the protein. These findings are of general importance for understanding the molecular mechanisms underlying regulation of body fat distribution and insulin resistance.  相似文献   

4.
LMNA, encoding lamin A/C, is mutated in partial lipodystrophy   总被引:23,自引:0,他引:23  
The lipodystrophies are a group of disorders characterized by the absence or reduction of subcutaneous adipose tissue. Partial lipodystrophy (PLD; MIM 151660) is an inherited condition in which a regional (trunk and limbs) loss of fat occurs during the peri-pubertal phase. Additionally, variable degrees of resistance to insulin action, together with a hyperlipidaemic state, may occur and simulate the metabolic features commonly associated with predisposition to atherosclerotic disease. The PLD locus has been mapped to chromosome 1q with no evidence of genetic heterogeneity. We, and others, have refined the location to a 5.3-cM interval between markers D1S305 and D1S1600 (refs 5, 6). Through a positional cloning approach we have identified five different missense mutations in LMNA among ten kindreds and three individuals with PLD. The protein product of LMNA is lamin A/C, which is a component of the nuclear envelope. Heterozygous mutations in LMNA have recently been identified in kindreds with the variant form of muscular dystrophy (MD) known as autosomal dominant Emery-Dreifuss MD (EDMD-AD; ref. 7) and dilated cardiomyopathy and conduction-system disease (CMD1A). As LMNA is ubiquitously expressed, the finding of site-specific amino acid substitutions in PLD, EDMD-AD and CMD1A reveals distinct functional domains of the lamin A/C protein required for the maintenance and integrity of different cell types.  相似文献   

5.
Distal hereditary motor neuropathy (dHMN) or distal spinal muscular atrophy (OMIM #182960) is a heterogeneous group of disorders characterized by an almost exclusive degeneration of motor nerve fibers, predominantly in the distal part of the limbs. Silver syndrome (OMIM #270685) is a rare form of hereditary spastic paraparesis mapped to chromosome 11q12-q14 (SPG17) in which spasticity of the legs is accompanied by amyotrophy of the hands and occasionally also the lower limbs. Silver syndrome and most forms of dHMN are autosomal dominantly inherited with incomplete penetrance and a broad variability in clinical expression. A genome-wide scan in an Austrian family with dHMN-V (ref. 4) showed linkage to the locus SPG17, which was confirmed in 16 additional families with a phenotype characteristic of dHMN or Silver syndrome. After refining the critical region to 1 Mb, we sequenced the gene Berardinelli-Seip congenital lipodystrophy (BSCL2) and identified two heterozygous missense mutations resulting in the amino acid substitutions N88S and S90L. Null mutations in BSCL2, which encodes the protein seipin, were previously shown to be associated with autosomal recessive Berardinelli-Seip congenital lipodystrophy (OMIM #269700). We show that seipin is an integral membrane protein of the endoplasmic reticulum (ER). The amino acid substitutions N88S and S90L affect glycosylation of seipin and result in aggregate formation leading to neurodegeneration.  相似文献   

6.
Major advances in the identification of genes implicated in idiopathic epilepsy have been made. Generalized epilepsy with febrile seizures plus (GEFS+), benign familial neonatal convulsions and nocturnal frontal lobe epilepsy, three autosomal dominant idiopathic epilepsies, result from mutations affecting voltage-gated sodium and potassium channels, and nicotinic acetylcholine receptors, respectively. Disruption of GABAergic neurotransmission mediated by gamma-aminobutyric acid (GABA) has been implicated in epilepsy for many decades. We now report a K289M mutation in the GABA(A) receptor gamma2-subunit gene (GABRG2) that segregates in a family with a phenotype closely related to GEFS+ (ref. 8), an autosomal dominant disorder associating febrile seizures and generalized epilepsy previously linked to mutations in sodium channel genes. The K289M mutation affects a highly conserved residue located in the extracellular loop between transmembrane segments M2 and M3. Analysis of the mutated and wild-type alleles in Xenopus laevis oocytes confirmed the predicted effect of the mutation, a decrease in the amplitude of GABA-activated currents. We thus provide the first genetic evidence that a GABA(A) receptor is directly involved in human idiopathic epilepsy.  相似文献   

7.
8.
Neutral lipid storage disease comprises a heterogeneous group of autosomal recessive disorders characterized by systemic accumulation of triglycerides in cytoplasmic droplets. Here we report a neutral lipid storage disease subgroup characterized by mild myopathy, absence of ichthyosis and mutations in both alleles of adipose triglyceride lipase (PNPLA2, also known as ATGL). Three of these mutations are predicted to lead to a truncated ATGL protein with an intact patatin domain containing the active site, but with defects in the hydrophobic domain. The block in triglyceride degradation was mimicked by short interfering RNA directed against ATGL. NLSDM is distinct from Chanarin-Dorfman syndrome, which is characterized by neutral lipid storage disease with ichthyosis, mild myopathy and hepatomegaly due to mutations in ABHD5 (also known as CGI-58).  相似文献   

9.
10.
11.
Familial hypercholanemia (FHC) is characterized by elevated serum bile acid concentrations, itching, and fat malabsorption. We show here that FHC in Amish individuals is associated with mutations in tight junction protein 2 (encoded by TJP2, also known as ZO-2) and bile acid Coenzyme A: amino acid N-acyltransferase (encoded by BAAT). The mutation of TJP2, which occurs in the first PDZ domain, reduces domain stability and ligand binding in vitro. We noted a morphological change in hepatic tight junctions. The mutation of BAAT, a bile acid-conjugating enzyme, abrogates enzyme activity; serum of individuals homozygous with respect to this mutation contains only unconjugated bile acids. Mutations in both TJP2 and BAAT may disrupt bile acid transport and circulation. Inheritance seems to be oligogenic, with genotype at BAAT modifying penetrance in individuals homozygous with respect to the mutation in TJP2.  相似文献   

12.
The phosphatidylinositol 3-kinase (PI3K)-AKT signaling pathway is critical for cellular growth and metabolism. Correspondingly, loss of function of PTEN, a negative regulator of PI3K, or activating mutations in AKT1, AKT2 or AKT3 have been found in distinct disorders featuring overgrowth or hypoglycemia. We performed exome sequencing of DNA from unaffected and affected cells from an individual with an unclassified syndrome of congenital progressive segmental overgrowth of fibrous and adipose tissue and bone and identified the cancer-associated mutation encoding p.His1047Leu in PIK3CA, the gene that encodes the p110α catalytic subunit of PI3K, only in affected cells. Sequencing of PIK3CA in ten additional individuals with overlapping syndromes identified either the p.His1047Leu alteration or a second cancer-associated alteration, p.His1047Arg, in nine cases. Affected dermal fibroblasts showed enhanced basal and epidermal growth factor (EGF)-stimulated phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) generation and concomitant activation of downstream signaling relative to their unaffected counterparts. Our findings characterize a distinct overgrowth syndrome, biochemically demonstrate activation of PI3K signaling and thereby identify a rational therapeutic target.  相似文献   

13.
The autosomal recessive form of Robinow syndrome (RRS; MIM 268310) is a severe skeletal dysplasia with generalized limb bone shortening, segmental defects of the spine, brachydactyly and a dysmorphic facial appearance. We previously mapped the gene mutated in RRS to chromosome 9q22 (ref. 4), a region that overlaps the locus for autosomal dominant brachydactyly type B (refs 5,6). The recent identification of ROR2, encoding an orphan receptor tyrosine kinase, as the gene mutated in brachydactyly type B (BDB1; ref. 7) and the mesomelic dwarfing in mice homozygous for a lacZ and/or a neo insertion into Ror2 (refs 8,9) made this gene a candidate for RRS. Here we report homozygous missense mutations in both intracellular and extracellular domains of ROR2 in affected individuals from 3 unrelated consanguineous families, and a nonsense mutation that removes the tyrosine kinase domain and all subsequent 3' regions of the gene in 14 patients from 7 families from Oman. The nature of these mutations suggests that RRS is caused by loss of ROR2 activity. The identification of mutations in three distinct domains (containing Frizzled-like, kringle and tyrosine kinase motifs) indicates that these are all essential for ROR2 function.  相似文献   

14.
The identification of tumor-suppressor genes in solid tumors by classical cancer genetics methods is difficult and slow. We combined nonsense-mediated RNA decay microarrays and array-based comparative genomic hybridization for the genome-wide identification of genes with biallelic inactivation involving nonsense mutations and loss of the wild-type allele. This approach enabled us to identify previously unknown mutations in the receptor tyrosine kinase gene EPHB2. The DU 145 prostate cancer cell line, originating from a brain metastasis, carries a truncating mutation of EPHB2 and a deletion of the remaining allele. Additional frameshift, splice site, missense and nonsense mutations are present in clinical prostate cancer samples. Transfection of DU 145 cells, which lack functional EphB2, with wild-type EPHB2 suppresses clonogenic growth. Taken together with studies indicating that EphB2 may have an essential role in cell migration and maintenance of normal tissue architecture, our findings suggest that mutational inactivation of EPHB2 may be important in the progression and metastasis of prostate cancer.  相似文献   

15.
Nephrogenic diabetes insipidus (DIR) is an X-linked disorder characterized by insensitivity of the distal nephron for the pituitary hormone, vasopressin. The genetic map location of the DIR gene on chromosome Xq28 coincides with the physical map location of the functional vasopressin renal V2-type receptor. Recently, the human and rat cDNAs for the vasopressin V2 receptor (AVPR2) have been identified. We show here that the structural AVPR2 gene is localized between DXS52 and G6PD, which is within the genetic map location of DIR. We also tested eight X-linked DIR probands and their families for mutations in one of the most conserved extracellular regions of AVPR2: in three of them, we have identified point mutations resulting in non-conservative amino acid substitutions which cosegregated with DIR in all families.  相似文献   

16.
The microtubule-associated protein tau (encoded by MAPT) and several tau kinases have been implicated in neurodegeneration, but only MAPT has a proven role in disease. We identified mutations in the gene encoding tau tubulin kinase 2 (TTBK2) as the cause of spinocerebellar ataxia type 11. Affected brain tissue showed substantial cerebellar degeneration and tau deposition. These data suggest that TTBK2 is important in the tau cascade and in spinocerebellar degeneration.  相似文献   

17.
Leukoencephalopathy with vanishing white matter (VWM) is an inherited brain disease that occurs mainly in children. The course is chronic-progressive with additional episodes of rapid deterioration following febrile infection or minor head trauma. We have identified mutations in EIF2B5 and EIF2B2, encoding the epsilon- and beta-subunits of the translation initiation factor eIF2B and located on chromosomes 3q27 and 14q24, respectively, as causing VWM. We found 16 different mutations in EIF2B5 in 29 patients from 23 families. We also found two distantly related individuals who were homozygous with respect to a missense mutation in EIF2B2, affecting a conserved amino acid. Three other patients also had mutations in EIF2B2. As eIF2B has an essential role in the regulation of translation under different conditions, including stress, this may explain the rapid deterioration of people with VWM under stress. Mutant translation initiation factors have not previously been implicated in disease.  相似文献   

18.
To identify somatic mutations in pediatric diffuse intrinsic pontine glioma (DIPG), we performed whole-genome sequencing of DNA from seven DIPGs and matched germline tissue and targeted sequencing of an additional 43 DIPGs and 36 non-brainstem pediatric glioblastomas (non-BS-PGs). We found that 78% of DIPGs and 22% of non-BS-PGs contained a mutation in H3F3A, encoding histone H3.3, or in the related HIST1H3B, encoding histone H3.1, that caused a p.Lys27Met amino acid substitution in each protein. An additional 14% of non-BS-PGs had somatic mutations in H3F3A causing a p.Gly34Arg alteration.  相似文献   

19.
Ollier disease and Maffucci syndrome are characterized by multiple central cartilaginous tumors that are accompanied by soft tissue hemangiomas in Maffucci syndrome. We show that in 37 of 40 individuals with these syndromes, at least one tumor has a mutation in isocitrate dehydrogenase 1 (IDH1) or in IDH2, 65% of which result in a R132C substitution in the protein. In 18 of 19 individuals with more than one tumor analyzed, all tumors from a given individual shared the same IDH1 mutation affecting Arg132. In 2 of 12 subjects, a low level of mutated DNA was identified in non-neoplastic tissue. The levels of the metabolite 2HG were measured in a series of central cartilaginous and vascular tumors, including samples from syndromic and nonsyndromic subjects, and these levels correlated strongly with the presence of IDH1 mutations. The findings are compatible with a model in which IDH1 or IDH2 mutations represent early post-zygotic occurrences in individuals with these syndromes.  相似文献   

20.
Spectrin mutations cause spinocerebellar ataxia type 5   总被引:12,自引:0,他引:12  
We have discovered that beta-III spectrin (SPTBN2) mutations cause spinocerebellar ataxia type 5 (SCA5) in an 11-generation American kindred descended from President Lincoln's grandparents and two additional families. Two families have separate in-frame deletions of 39 and 15 bp, and a third family has a mutation in the actin/ARP1 binding region. Beta-III spectrin is highly expressed in Purkinje cells and has been shown to stabilize the glutamate transporter EAAT4 at the surface of the plasma membrane. We found marked differences in EAAT4 and GluRdelta2 by protein blot and cell fractionation in SCA5 autopsy tissue. Cell culture studies demonstrate that wild-type but not mutant beta-III spectrin stabilizes EAAT4 at the plasma membrane. Spectrin mutations are a previously unknown cause of ataxia and neurodegenerative disease that affect membrane proteins involved in glutamate signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号