首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文是文献[9],[10]的继续。在本文中,我们研究了(AC)算子,可分解算子,谱算子以及它们之间的关系。证明了:(1)若T∈B(X)是(AC)算子,对于每个E,F∈F,有则T是可分解算子。(2)T∈B(X)是谱算子当且仅当T是(AC)算子且满足下述条件:(ⅰ)对每个Borel子集δ,δ∈B,有X_T(δ)=X_T((δ∩δ)⊕此处⊕表示直接和;(ⅱ)对每个x∈X,数集是有界的,此处(3)若是(H)空间,是可分解算子,则下述条件是等价的:(ⅰ)(E)(ⅱ)①从推出(此处P_F是从到_T(F)上直交射影,⊕表示直交和)。它是B.L.Wadhwa定理的新形式。  相似文献   

2.
本文给出 T∈B(X)是拟可分解算子的一个等价条件,证明了在拟幂零等价条件下以及在相似条件下,算子的拟可分解性质是遗传的。最后,建立了拟可分解算子在其谱极大空间上的限制成为拟可分解算子的准则。无特殊声明,本文将采用[2]中的符号。定理1 T∈B(X)是拟可分解算子的充要条件是 T 有(AC)谱容度(?)(·)且(?)(·)满足条件  相似文献   

3.
在Banach空间上,C.Foias引进可分解算子概念,它是N.Dunford谱算子的一种有意思的推广。这就自然提出如下问题:在什么样的条件下可分解算子是谱算子?在B.L.Wadhwa中给出了这个问题的部分回答。 定义 设T是Hilbert空间H上的可分解算子,对复平面上任何闭集δ,设P_δ是从H到T之谱极大空间  相似文献   

4.
在本文中,我们证明:T是无界强可分解算子当且仅当对T的任意谱极大空间Y,T~Y是无界强可分解算子。  相似文献   

5.
设X是复B-空间,B(X)是X上有界线性算子全体,C是复平面,F是C的一切闭子集类,我们引入一类算子,并研究它的谱理论,算子T∈B(X)称为(AC)算子,若T有性质(A)与(C),我们证明:(1)T∈B(X)是(AC)算子当且仅当对F到X的闭子空间类的同态X(·)满足下述条件:(ⅰ)(F_1∩F_2)=X(F_1)∩X(F_2);(ⅱ)X(φ)={0},X(C)=X;(ⅲ)TX(F)X(F);(ⅳ)σ(T|X(F))F;(ⅴ)对x∈X若存在解析函数x(λ):CF→X,使(λI-T)x(λ)=x,则x(λ)∈X(F),λ∈CF,(2)设T∈B(X)是(AC)算子,则对任何F∈F,有:(ⅰ)若X_T(F)≠{0},则F∩σ(T)≠φ;(ⅱ)若X_T(F)={0},则F∩σ_p(T)=φ,(3)设T∈B(X),σ(T)位于光滑Jordan曲线Γ上,又对每个z∈Γ,存在Γ邻域V上非零解析函数f(z),使 ‖f(z)R(λ,T)‖≤M_z,λ≠z,λ∈V,M_z>0,则T是(AC)算子。  相似文献   

6.
I.Erdelyi 和 R.Lange 在(1)中证明了:如果(B)空间中有界算子T 弱可分解且具有分离谱,则存在 T 的弱谱容度 E 使得 SuppE=σ(T).本文指出:对(B)空间中有界算子 T 的任一弱谱容度,上述结论亦成立,并且对(B)空间中具有强谱度的闭算子,其结论仍然成立。而且证明了:(B)空间中具有强谱容度的闭线性算子为有界可分解算子的充要条件是σ(T)有界.  相似文献   

7.
给出一类不可分解的Σ1e型Banach空间上有界线性算子的谱的特殊结构,证明了存在某个Σ1e型Banach空间使其上某个(B)型良有界算子T的谱σ(T)是可数无限集.  相似文献   

8.
本文给出了(AC)算子存在非平凡谱极太空间的充要冬件.并且给出了 X_t(F)成为非平凡谱极大空间的条件。  相似文献   

9.
本文给出了Banach空间上的闭算子T具有强谱分解性质的几个充分必要条件,作为准备,我们先证明闭算子T在商空间X/Y上的诱导算子也是闭的,其中Y是T的不变子空间,满足δ(T|Y)≠C,或是T的谱极大子空间。  相似文献   

10.
设 C_∞表示扩充复平面,X 表示复 Banach 空间,T 表示以(T)X 为定义域的闭线性算子,由于本文主要研究无界闭线性算子,故将 T 的预解集 P(T)及谱σ(T)均视为 C_∞的子集,并假定 P(T)非空.定义1.设 T 是(T)X 为定义域的有单值扩张性的闭线性算子,T 称为封闭强拟可分解算子,如果对σ(T)的任意有限开复盖.{G_i}_i~=i及 T 的任意谱极大空间 Y,存在  相似文献   

11.
令α_1,…,α_n是Banach空间X上可交换算子组。在本文中,我们引入强解析可分解交换算子组概念。α=(α_1,…,α_n)称为强解析可分解的,如果对α的任意谱极大空间Y,α_Y=(α_1|Y,…,α_n\Y)是解析可分解的。我们的主要结果是: 定理。α=(α_1,…,α_n)是强解析可分解的,当且仅当对α的任意谱极大空间Y,α~Y=(a_1~Y,…,α_n~Y)是强解析可分解的。  相似文献   

12.
设T是Banach空间X上有界S-可分解算子,在假设了有单值扩张性质之下,我们讨论了T的集谱。  相似文献   

13.
拟可分解算子概念由 A.A.Jafarian 引入,并讨论了有界拟可分解算子的某些性质及其在谱极大空间上限制的拟可分解性.我们在中引入了 Bauach 空间上无界拟可分解算子的概念,并把中的一些结果推广到无界拟可分解算子上.本文讨论某类无界拟可分解算子的商算子的拟可分解性,给出了某类无界拟可分解算子的商算子成为拟可分解算子的充要条件.  相似文献   

14.
称一个Hilbert空间算子T满足广义(ω)性质,如果算子T的上半B-Weyl谱在逼近点谱中的补集恰好为谱集中孤立的特征值全体.利用局部谱理论的知识,给出了Hilbert空间上2×2斜对角算子矩阵满足广义(ω1)性质和广义(ω)性质的充要条件.作为应用,最后给出了一些有用的推论.  相似文献   

15.
本文中用C表示复平面,C_∞表示扩充的复平面,C(X)为复 Banach 空间X上闭算子的全体。若T∈C(X),我们用D_T记T的定义域,ρ(T),σ(T),ρ_e(T)分别为T的予解集、谱和扩充谱。σ(x,T)是T在x处的局部谱。我们还定义T在x处的扩充局部谱σ_e(x,T)如下设Y为X的闭子空间,如有T(Y∩D_T)Y,则称Y是T的不变子空间记作Y∈I_(nv)(T)。T\Y和T~Y分别表示T在Y上限制及在X/Y上的诱导商算子,设Y∈I_(nv)(T),如果对任何Z∈I_(nv)(T),恒可经σ_(?)(T\Z)(?)σ_e(T\Y)推得ZY,则称Y为T的(e)极大谱  相似文献   

16.
本文讨论 Banach 空间上的闭可约化算子,闭谱算子及闭可分解算子的谱特征,并给出了 Banach 空间上的闭算子成为闭谱算子的充要条件。设 X 是复 Banach 空间,C(x)表示 X 中的闭线性算子全体,C_∞表示扩充复平面。定义1 T∈C(X)称为完全谱可约化算子,如果对 C_∞的每个开子集或闭子集ι及相应的谱子空间(?),存在 T 的不变子空间 M,使得  相似文献   

17.
本文给出谱位于 Jordan 曲线上的一类闭算子是可分解算子的充分条件.设 C 和 C_∞分别表示复平面和扩充复平面.和分别表示 C_∞的闭子集族和 C 的紧子集族.X 表示复 Banach 空间.(X)和(X)分别表示 X 上的闭线性算子族和有界线性算子族.(T)表示算子 T 的定义域.ρ(T)和σ(T)分别表示 T 的预解集和  相似文献   

18.
研究了局部凸空间上对偶算子和偏微分算子的谱结构.主要结果有:定理1 若 X 是完备的桶空间,则 T∈L(X)与T′∈L(X′_β)具有相同的谱和奇谱.定理2 设 P(D)是速降函数空间(R~n)上的常系数偏微分算子,则 P(D)的剩余谱为 P(R~n),谱为 P(R~n)在 C 的单点紧化 C_∞中的闭包■,奇谱为■\P(R~n),点谱和连续谱均为空集.当n=1时,P(D)的值域是有限余维的闭子空间.定理4 设 P(D)是带强拓扑的缓增分布空间(R~n)上的常系数偏微分算子,则 P(D)的谱为■,点谱为 P(R~n),奇谱为■\(R~n),连续谱和剩余谱均为空集.  相似文献   

19.
本文研究局部凸空间中线性算子的谱理论,在局部凸空间中证明了谱可分解算子与可分解算子的等价性,并进一步研究了局部凸空间上的可分解算子的对偶理论.  相似文献   

20.
在本文中,我们引入封闭可分解算子和封闭算子的谱容量的概念。并证明了如下的结果:(i)如果 T∈Q(X)(Q(X)表示复 Banach 空间 X 上有非空豫解集的封闭算子(不一定稠定)的全体)是2-可分解的,那末:(a)T 有 S(?)EP。(b)σ(T)=σ_(?)(T)。(c)对任意的开集 G((?)C),存在 Y∈SM(T)。使得(?)(d)(0) ∈SM(T)。(e)对于任意非零的 Y∈INV(T),σ(T|Y)≠(?)。(f)若 Y∈INV(T)且σ(T|Y)有界,那末 Y(?)D_T。(g)如果对于任意的 x∈D_T,σ(x,T)都是相界的,那末 T∈B(X)。(ii)如果 T∈Q(X),那末下列四条等价:(a)T 有2-谱容量;(b)T 有谱容量;(e)T2-可分解;(d)T 可分解并且,T 强可分解必须且只须 T 有强谱容量。(iii)如果 T∈Q(X)有2-谱容量 E,那末(a)suppE=σ(T)。(b)对任意的闭集 F(?)C,E(F)=X_T(F)∈SM(T)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号