共查询到19条相似文献,搜索用时 78 毫秒
1.
2.
为了提高矿井瓦斯涌出量的预测精度,采用改进层次分析法对指数预测,双曲线预测和灰色预测3种传统预测方法,从稳定性,数据利用和适用时间上来进行加权组合,提出一种基于改进层次分析法的组合预测方法,并对西北某矿区4月份的绝对瓦斯涌出量数据进行研究。结果表明,与几种传统方法的独立预测结果相比,该方法精度较高,也易于操作,对矿区瓦斯预测有一定的指导意义。 相似文献
3.
应用BP人工神经网络理论,建立了矿井掘进工作面瓦斯涌出量的预测模型,克服了由于各因素的不确定所造成的影响,提高了瓦斯涌出量预测的准确性.实际应用表明,预测模型可信,精度能满足要求. 相似文献
4.
王晓东 《科技情报开发与经济》2012,22(7):146-148
根据玉华矿矿井瓦斯涌出量预测计算情况,指出本矿井必须建立瓦斯抽放系统,以降低矿井生产中的瓦斯涌出量,加强通风管理,确保矿井安全正常地生产。 相似文献
5.
为进一步研究瓦斯涌出量与影响因素之间的映射关系,建立了径向基函数网络预测模型,并基于瓦斯涌出量与影响因素关系的实际收集数据,对其本构关系进行了函数逼近,通过网络所建立的映射关系对矿井瓦斯涌出量进行了预测。实例分析表明,利用RBF网络预测矿井瓦斯涌出量,拟舍精度较高,与BP网络相比较,具有较高的预测效率和精度。 相似文献
6.
针对矿井瓦斯涌出量影响因素复杂,数据序列波动性较大,灰色GM(1,1)预测模型精度低,本身存在一定缺陷的特点,将自记忆性原理引人灰色系统理论,建立了矿井瓦斯涌出量预测的灰色自记忆预测模型。经在韩城下峪口煤矿应用表明,该模型具有预测精度高,稳定性好的特点。 相似文献
7.
为了提高综采工作面瓦斯涌出量的预测精度,根据综采工作面瓦斯来源的分析,在瓦斯分源预测方法的基础上,融合神经网络预测技术,建立BP神经网络分源预测模型.结合某矿1242(1)工作面地质条件和开采技术条件,利用BP神经网络分源预测模型对工作面瓦斯涌出量进行了预测,结果表明,BP神经网络分源预测模型预测精度能满足现场需求,与... 相似文献
8.
9.
本文应用灰色系统理论建立了回采工作面瓦斯涌出量的灰色动态预测模型,并对化处矿1273回采工作面瓦斯涌出量进行了实例预测。 相似文献
10.
提出PLS-BP神经网络组合模型,预测回采工作面瓦斯涌出量.利用分源预测法划分回采工作面瓦斯涌出来源,根据瓦斯涌出来源受不同因素的影响,运用偏最小二乘法(PLS),通过交叉有效性分析,确定提取主成分个数,将主成分作为神经网络输入层建立关联模型.研究证明,本方法不仅避免了各种不相关因素之间的干扰,解决各因素之间多重相关问题,降低变量维数,而且可以结合BP神经网络的非线性映射能力和适应学习能力等优点,提高预测稳定性和精度. 相似文献
11.
地面沉降是一种常见的地质灾害,严重阻碍当地居民的生产生活,如何对地面沉降进行准确预测已经成为相关专家学者讨论的热点话题,但常规数学模型难以对地面沉降量做出准确预测。提出了麻雀搜索算法(sparrow search algorithm, SSA)优化Elman的地面沉降量预测方法,同时根据组合模型原理提出了SSA-Elman残差自校正(SSA-Elman residual self-correction, SSA-Elman-RSC)模型的策略,通过残差校正的方式降低神经网络预测误差,成功地将地面沉降量预测模型应用于山西省大同市潇河产业园,将预测结果与未进行残差修正的模型预测结果进行比较分析。结果表明,对于均方根误差(root mean squared error, RMSE)、平均绝对误差(mean absolute error, MAE)、均方误差(mean square error, MSE)3个指标,SSA-Elman-RSC拥有更高的精度。该模型的提出为山西地区地面沉降量预测提供了一种新方法,并且组合模型的建立提供了一种新思路。 相似文献
12.
为了提高瓦斯涌出预测的准确性,采用BP型神经网络,利用BP型神经网络自学习、自组织和自适应等特性,在MATLAB环境下构建瓦斯动态预测模型.通过对唐山矿瓦斯信号实时监测数据的分析,对瓦斯动态预测模型进行训练和测试.结果表明,该模型的预测速度快、精度高,可以实现对工作面瓦斯涌出的动态预测,并能综合判断工作面所处地点的安全状况以及前方的潜在的危险性. 相似文献
13.
杨杰;刘桂雄 《华南理工大学学报(自然科学版)》2009,37(2)
针对活塞环渗氮硬化工序建模困难的情况,通过主成分分析法(PCA)提取氮化工序特征参数,降低了质量模型输入样本维数,建立了基于小波Elman神经网络的活塞环制造关键工序质量预测模型,实现了工序过程质量波动趋势的预测,为后续的工艺优化和质量改进奠定基础。结果表明,该方法可以有效地改进渗氮硬化工序的质量控制,质量预测模型对输出质量特征值的预测准确率达到89%,具有比标准Elman网络更好的预测精度和收敛速度. 相似文献
14.
空调系统的负荷与诸多影响因素之间是一种多变量、强耦合、严重非线性的关系,且这种关系具有动态性,因而传统方法的预测精度不高,而动态回归神经网络能更生动、更直接地反映系统的动态特性。针对这个特点,建立了基于Elman型神经网络的空调负荷预测模型,并进行了实例预测。文中还比较了Elman网络和BP终结建模效果,仿真实验证明了Elman神经网络具有动态特性好、逼近速度快、精度高等特点,说明Elman网络是一种新颖、可靠的负荷预测方法。 相似文献
15.
矿井回采工作面瓦斯涌出量预测新途径 总被引:1,自引:0,他引:1
在研究大量国内外矿井瓦斯涌出量预测方法的基础上,通过比较,分析灰色理论在矿井瓦斯涌出量预测方法中的优势,根据某矿102回采工作面的相关瓦斯涌出数据,以灰色预测理论为基础,通过对影响回采工作面瓦斯涌出量的关键因素分析,建立该工作面的瓦斯涌出量GM(1,1)预测模型,通过模型的求解,给出预测结果,并对结果进行检验.结果表明,该模型预测结果与生产实际吻合度较高,对煤矿瓦斯管理具有十分重要的指导意义. 相似文献
16.
传统PMV指标计算方法具有复杂度高、延时大的缺陷.根据PMV参数的时变特征,利用Elman神经网络建立PMV参数预测模型,实现对热舒适度的在线监测.模型以温度、相对湿度、风速和平均辐射温度为输入,以PMV指标为预测输出,具有良好的泛化能力.仿真结果表明该方法的预测结果与数值计算的结果相近,同时训练后神经网络的计算时间优于传统方法的计算时间. 相似文献
17.
应用Elman神经网络的混沌时间序列预测 总被引:5,自引:0,他引:5
利用改进的 Elman神经网络对 3个典型的混沌时间序列在不同的噪声水平下进行预测 ,探讨了神经网络学习与泛化之间的关系 ,通过试凑法给出了 Elman最优的隐节点个数。并利用3种指标对预测结果进行了评估 ,结果显示 Elman网络对混沌时间序列预测的良好特性 相似文献
18.
交通流诱导系统是智能交通系统领域中一项重要的研究内容,而交通流量的预测问题则是交通流诱导系统的核心问题.因此,能够实时准确地预测交通流量成为诱导系统是否能够有效实现的关健问题.根据交通流的特性,分析交通数据采集过程中错误数据产生的原因,提出相应的处理方法,并在此基础上采用Elman神经网络对智能交通系统的流量预测进行建模.该系统采用C#并结合Matlab进行开发,通过Elman神经网络算法实现流量的预测,并采用图表的方式直观地显示预测结果.应用结果表明:该方法可以有效地对交通流量进行预测,且预测精度可以满足实际交通诱导的需要. 相似文献
19.
针对神经网络预测电池阵功率存在的模型阶数难以确定及预测精度低下的问题,提出一种基于改进的Elman神经网络的双向预测模型。该模型利用关联层动态神经元的反馈连接,将未来预测网络和过去预测网络的信息进行融合。使网络对时间序列特征信息的记忆得到加强,从而提高预测精度。用该文提出的双向预测模型对电池阵功率进行预测,输入层仅需一个节点,不需事先对模型进行定阶。仿真预测表明,预测精度比单向模型明显提高,且网络具有较好的泛化能力。 相似文献