首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
加入适当的表面活性剂使微粒矿物表面疏水化而使其悬浮体产生聚团的现象,称为诱导疏水絮凝。它与常规的胶体聚沉现象不同,不能为DLVO理论所解释。本文通过对颗粒间疏水粘着力及润湿接触角、zeta电位的测量和体系的疏水絮凝行为的研究,获得如下结论:疏水作用力对诱导疏水絮凝起支配作用;当微粒表面有足够大的润湿接触角而颗粒产生疏水吸引力时,才能使微粒悬浮体强烈聚团。  相似文献   

2.
鳞片石墨在水中表现出强疏水性,易形成疏水聚团,其聚团行为影响分选过程的选择性和加工利用过程的分散性。通过对鳞片石墨粉体颗粒的润湿接触角、润湿热、ξ电位的测量及真空浮选实验,研究了鳞片石墨在水中的聚团行为。结果表明:鳞片石墨粉体颗粒的接触角接近90°,疏水性强;不同粒级的鳞片石墨被水润湿呈现出放热和吸热两个过程,且不能自发进行;接触角越大,Zeta电位越小,颗粒越易聚团。石墨颗粒在水面上以大鳞片为中心形成片状聚结,随着颗粒浓度的增多,相互叠加形成远大于颗粒尺度的聚团。鳞片石墨在水中的聚团行为符合扩展的DLVO理论,颗粒间的疏水作用力是聚团形成的根本原因。  相似文献   

3.
为表征水泥和矿物掺合料与水的润湿性,采用薄层毛细渗透方法对水与不同水化时间的水泥净浆粉末及粉煤灰、矿渣粉、硅灰粉等矿物掺合料粉体的动态接触角进行了测试.结果表明,选用无水乙醇做参比液,水与水泥颗粒粉末表面的初始相对动态接触角约56°,随着水化的进行,动态接触角逐渐降低,最终稳定在(22±1)°.水在粉煤灰粉体和矿渣粉体表面的相对动态接触角分别为56°~60°和53°~63°,在硅灰粉体和CaCO3粉体表面的相对动态接触角分别约为43°和70°.就亲水性而言,由强到弱的顺序依次为:硅灰、水泥、粉煤灰、矿渣粉、CaCO3.水化水泥浆体粉末与水的接触角随水化进行逐渐减小并最终趋于恒定.  相似文献   

4.
以南京梅山铁矿采掘面爆破粉尘为研究对象,对其中亲水性粉尘(HD,可快速沉降水底)与疏水性粉尘(HCD,较长时间浮于水面)进行分离,并利用接触角测定仪测定两者的润湿接触角,对其润湿性进行定量表征;应用激光粒度分析仪、真密度分析仪、X线粉末衍射仪(XRD)及X线光电子能谱仪(XPS)对其理化特性进行全面表征;通过对比二者差异,对影响粉尘润湿特性的关键因素进行讨论。研究结果表明:HCD的润湿接触角远比HD的大,即HCD的润湿能力远比HD的弱;粒径和真密度是影响粉尘润湿性能的关键因素,粒径与真密度越小,粉尘疏水性越强;尘粒表面的化学特性并不是影响粉尘润湿性的关键因素,HCD的表面亲水物相含量比HD的高,HCD表面疏水基团含量比HD的低,与HCD润湿性弱于HD润湿性的探究结果相矛盾;从HCD和HD的粒径分布以及游离二氧化硅体积分数来看,HCD对人体的危害更为严重。  相似文献   

5.
利用氨丙基三乙氧基硅氧烷(APTES)和全氟辛基磺酰氟(PFOSF)对纳米SiO2颗粒进行表面改性,通过红外光谱(FT-IR)、热重分析(TGA)和接触角(CA)等手段对改性后的纳米颗粒进行表征,确定了改性剂的接枝类型,考察了接枝率对纳米颗粒疏水程度的影响,并研究了纳米颗粒疏水程度及其占硅膏的质量分数对消、抑泡性能的影响,最后结合硅膏的黏度、流变性及有机硅消泡剂的消泡机制对上述实验数据及现象作出对应的解释。结果表明:PFOSF以APTES作为"媒介"化学接枝到SiO2表面,当二者占SiO2质量分数分别为9.4%和4.6%时,颗粒具有最大的接触角,约150°;当二者占SiO2质量分数分别为4.7%和2.3%时,颗粒的接触角为110°,控制改性颗粒占二甲基硅油(PDMS)质量分数的4%,由此硅膏制备的有机硅消泡剂具有最佳的消、抑泡效率。  相似文献   

6.
接触角测试的量高法的适用范围   总被引:2,自引:2,他引:0  
李健 《科学技术与工程》2013,13(16):4486-4490
量高法是接触角测试的一种简便的测试方法,在工程和研究中得到广泛应用。该方法基于液滴的球形假设,决定其仅有有限的适用范围。通过数值模拟的方法研究量高法所引起的接触角偏差,从而考察量高法的适用范围并给出接触角修正的方法。研究发现:采用量高法计算的接触角与真实接触角有很大的偏差,这种偏差在超疏水表面上的接触角测量中尤为明显,可达20°;偏差范围决定于液滴的性质、表面的润湿性能和液滴的体积,液体表面张力小、接触角大和液滴体积大将导致大的偏差。在超疏水或超疏油表面研究中,为精确表征表面的润湿性能,需要对量高法进行偏差修正,提出了一种用于偏差修正的方法,通过该方法可精确确定出真实接触角。  相似文献   

7.
本文系统讨论了界面极性相互作用理论及其在细粒浮选研究中的应用。亲水矿粒间水化排斥作用及疏水矿粒间疏水吸引作用主要归因于颗粒间界面极性相互作用。通过测定矿物在已知表面能参数的液体中的接触角,就可确定矿物的表面能参数值。由界面极性相互作用能确定水化或疏水相互作用能量常数,从而计算颗粒间水化或疏水相互作用能曲线,利用EDLVO理论能很好解释矿粒间的凝聚、分散行为。  相似文献   

8.
疏水纳米颗粒吸附在岩心孔壁发生去水湿,形成超强疏水层,是纳米颗粒吸附法降压增注技术的关键。采用热力学理论研究疏水球状纳米颗粒在亲水表面吸附后产生去水湿的临界覆盖率,利用实际储层参数讨论纳米颗粒吸附表面诱发去水湿的主要因素及影响规律,分析去水湿的力学机制;开展纳米颗粒吸附岩心表面的去水湿模拟实验,研究岩心表面润湿性的变化和纳米颗粒的覆盖率。结果表明:岩心表面发生去润湿现象要求纳米颗粒覆盖率大于临界覆盖率;增大颗粒接触角和基底接触角,减小纳米颗粒粒径,降低液气压差,都可以降低临界覆盖率,有利于产生去水湿;疏水纳米颗粒吸附在岩心表面,使表面接触角从30°增加到127°,颗粒覆盖率达到74%,大于临界覆盖率72%;去水湿现象确实可以通过疏水纳米颗粒吸附诱发产生,验证了理论分析的准确性。  相似文献   

9.
多孔介质的润湿性是CO2地质封存过程中的重要参数。基于润湿性测量方法和光学成像技术综述了CO2封存条件下不同尺度的多孔介质润湿性测量技术,并分析了相关润湿现象。目前,岩石润湿性的测量主要分为:实验室尺度的表面润湿性测定、孔隙尺度的内部壁面接触角测定,以及宏观尺度的岩心整体润湿性评价。孔隙结构、矿物组成成分和表面粗糙度是孔隙尺度接触角的关键影响因素,它们会影响多孔介质的混合润湿特性并造成润湿滞后现象。根据不同局部驱替事件(如排水、渗吸)的接触角分布建立了孔隙尺度与连续尺度的岩石润湿性关系。最新研究发现,随着驱替的发展,岩石润湿性在排水和渗吸过程中发生了显著改变,但不同尺度的岩石润湿性的关系及润湿转变机理仍需要进一步研究。  相似文献   

10.
探讨混合润湿页岩的气-水自吸特征,为压裂液中是否需要加入润湿改性剂提供理论依据.通过建立混合润湿平板模型,对引起流体自吸的作用力进行了分析,推导了混合润湿平板模型的自吸Lucas-Washburn方程,并运用两相流水平集方法进行了数值模拟,验证了混合润湿平板模型的Lucas-Washburn方程判断自吸方向的正确性.研究结果表明,对于混合润湿平板模型,气-水的自吸方向只由亲水壁和疏水壁的接触角之和决定.当亲水与疏水壁的接触角之和小于π时,孔隙会自发吸水排气;当亲水壁与疏水壁的接触角之和大于π时,孔隙会自发吸气排水;当接触角之和等于π时,气、水均无法自吸.  相似文献   

11.
接触角滞后现象的理论分析   总被引:6,自引:3,他引:3  
通过引入“滞后阻力”的概念,分别用力学方法和热力学方法导出固体表面上液滴平衡时接触角应满足的条件;定性地给出了表面湿润性和前进接触角与后退接触角同表面粗糙度的关系,分析了前进接触角和后退接触角的物理意义;由此给出了接触角滞后现象的一种合理解释.本的研究为汽液相变传热过程中的沸腾核化、临界热负荷、最小热流密度、珠状凝结等现象的深刻认识,开拓了新的思路,传统研究中对粗糙度影响的复杂定量化测量描述也可转化为用接触角单一参数表征和描述的简化方法.因此本的认识对研究沸腾和凝结传热有重要的现实意义.  相似文献   

12.
木质材料动态润湿性能的表征   总被引:3,自引:0,他引:3  
润湿性表征胶粘剂与木质材料接触时在木质材料表面上粘附、渗透及铺展的难易程度和效果.笔者根据木质材料的结构与性能特点,建立了描述其表面动态润湿性能的数学模型,在模型中提出了用系数K来评价材料的润湿性能.运用该模型对异氰酸酯(MDI)和脲醛树脂(UF)在中密度稻草板(MDSB)表面的润湿性能进行了研究,得出MDI的K值较大,MDI在中密度稻草板表面的润湿性能较好.  相似文献   

13.
目的 研究石油磺酸盐对砂岩润湿性的测定方法。方法 采用Washburn方程建立了测定及计算方法。结果 通过相对润湿接触角概念的提出,得到了砂岩-重烷基苯石油磺酸盐水溶液体系润湿性的测定结果。结论 建立的砂岩.石油磺酸盐水溶液体系的润湿接触角测定方法是一简便、准确的方法。石油磺酸盐水溶液浓度的变化将对砂岩的润湿性质产生明显影响。  相似文献   

14.
分别用3种润湿性测量方法(铺展面积测量法、润湿力测量法和润湿角测量法)做了不同松香浓度和不同助焊剂下的钎料Sn-37Pb的润湿性,以及在不同助焊剂下润湿性.通过对比分析发现,钎料Sn-37Pb的铺展面积和润湿力测量结果随着松香浓度的增加呈现出相近的趋势,有较好的一致性;在不同助焊剂的情况下,不同钎料的铺展面积和润湿力的测量结果较复杂,缺乏一致性.  相似文献   

15.
煤层注水中粘尘棒溶液对接触角的影响   总被引:1,自引:0,他引:1  
研究了煤层注水中添加粘尘棒溶液降低接触角、缩短接触润湿时间的除尘方法.通过测定和分析粘尘棒溶液不同浓度下七种煤样的接触角和润湿时间,比较得出了七种煤样的临界表面张力,为35.0 mN/m,发现注入水的表面张力是增加煤层注水湿润效果的主要因素.该法可以大大提高煤层注水降尘效果,而且添加工艺简单,方便实用.  相似文献   

16.
 作为极端润湿表面的一种,超亲水薄膜表面由于具有自清洁、防雾、防腐蚀等特性,成为现代工业、城市建设等领域的研究重点之一。界定极端润湿表面的一种方法为接触角的测量,因此获得更高精度的接触角对极端润湿表面工程具有重要意义。讨论了在超亲水薄膜表面提高接触角精度的3种算法,包括量高法、圆拟合法及椭圆拟合法,结果显示接触角在接近0°时通过圆拟合算法能够提高计算精度。  相似文献   

17.
Physical and numerical models of the hydrophobic and self-cleaning characteristics of an object surface are developed, and a micro/meso scope numerical approach and simulation based on the lattice Boltzmann method (LBM) is achieved. The modelling focuses on surface tension dominated behaviour of water droplets in air spreading on hydrophilic surface with hydrophobic strips of different sizes and contact angles under different physical and interfacial conditions. Applying the LBM model, the droplets behaviours on heterogeneous partial wetting surfaces are studied and simulated. In the simulations, the interactions between the fluid-fluid interface and the partial wetting wall are typically considered; the phenomena of droplets spreading and breaking up, as well as the effect of hydrophobic strips on the surface wettability or self-cleaning characteristics are simulated and studied. Supported by the UK Engineering Physical Science Research Council (EPSRC) under EP/D500125/1 and International Cooperation Key Project of Ministry of Science and Technology of China (Grant No. 2005DFA00805)  相似文献   

18.
为实现润湿图案化的超疏水表面在航空电子设备散热中的应用,本文对液滴撞击双疏水表面(具有疏水性图案的超疏水基质)的润湿行为和传热特性进行了分析.通过使用高速相机和红外相机,我们获取了液滴铺展和回退阶段的动力学以及表面温度和热流量的相应空间分布.本文研究了液滴撞击超疏水、疏水和双疏水表面上的动态润湿和局部传热的差异.此外,本文还分析了表面温度和撞击高度对液滴撞击过程的影响.结果表明,所有表面在铺展阶段都具有相同的润湿特性和相似的传热行为.表面温度变化并不能对铺展阶段表面润湿特性产生较大的影响,液滴铺展时间与表面温度和撞击高度无关.在回退阶段,表面润湿特性的差异使得三个表面之间的传热特性明显不同.双疏水表面特殊润湿特性使得回退阶段液膜的接触线速度存在跳变现象,形成了许多小液滴,增加了接触面积,同时又兼具了超疏水表面的回弹特性.  相似文献   

19.
以熔喷聚酯非织造布作为白细胞过滤器的滤材,根据不同等离子体处理条件和丙烯酰胺接枝条件的组合变化,得到各因素对接枝改性效果的影响情况。并通过对材料表面润湿性能的分析,提出影响其临界润湿表面张力的主要影响因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号