首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Mesenchymal stem cells have been recently described to localize to breast carcinomas, where they integrate into the tumour-associated stroma. However, the involvement of mesenchymal stem cells (or their derivatives) in tumour pathophysiology has not been addressed. Here, we demonstrate that bone-marrow-derived human mesenchymal stem cells, when mixed with otherwise weakly metastatic human breast carcinoma cells, cause the cancer cells to increase their metastatic potency greatly when this cell mixture is introduced into a subcutaneous site and allowed to form a tumour xenograft. The breast cancer cells stimulate de novo secretion of the chemokine CCL5 (also called RANTES) from mesenchymal stem cells, which then acts in a paracrine fashion on the cancer cells to enhance their motility, invasion and metastasis. This enhanced metastatic ability is reversible and is dependent on CCL5 signalling through the chemokine receptor CCR5. Collectively, these data demonstrate that the tumour microenvironment facilitates metastatic spread by eliciting reversible changes in the phenotype of cancer cells.  相似文献   

2.
Png KJ  Halberg N  Yoshida M  Tavazoie SF 《Nature》2012,481(7380):190-194
Metastatic progression of cancer is a complex and clinically daunting process. We previously identified a set of human microRNAs (miRNAs) that robustly suppress breast cancer metastasis to lung and bone and which display expression levels that predict human metastasis. Although these findings revealed miRNAs as suppressors of cell-autonomous metastatic phenotypes, the roles of non-coding RNAs in non-cell-autonomous cancer progression processes remain unknown. Here we reveal that endogenous miR-126, an miRNA silenced in a variety of common human cancers, non-cell-autonomously regulates endothelial cell recruitment to metastatic breast cancer cells, in vitro and in vivo. It suppresses metastatic endothelial recruitment, metastatic angiogenesis and metastatic colonization through coordinate targeting of IGFBP2, PITPNC1 and MERTK--novel pro-angiogenic genes and biomarkers of human metastasis. Insulin-like growth factor binding protein 2 (IGFBP2) secreted by metastatic cells recruits endothelia by modulating IGF1-mediated activation of the IGF type-I receptor on endothelial cells; whereas c-Mer tyrosine kinase (MERTK) receptor cleaved from metastatic cells promotes endothelial recruitment by competitively antagonizing the binding of its ligand GAS6 to endothelial MERTK receptors. Co-injection of endothelial cells with breast cancer cells non-cell-autonomously rescues their miR-126-induced metastatic defect, revealing a novel and important role for endothelial interactions in metastatic initiation. Through loss-of-function and epistasis experiments, we delineate an miRNA regulatory network's individual components as novel and cell-extrinsic regulators of endothelial recruitment, angiogenesis and metastatic colonization. We also identify the IGFBP2/IGF1/IGF1R and GAS6/MERTK signalling pathways as regulators of cancer-mediated endothelial recruitment. Our work further reveals endothelial recruitment and endothelial interactions in the tumour microenvironment to be critical features of metastatic breast cancer.  相似文献   

3.
三阴乳腺癌(Triple Negative Breast Cancer, TNBC)是乳腺癌中恶性程度最高的一种亚型,表现为很高的转移潜能。巨噬细胞,即肿瘤相关巨噬细胞(Tumor-Associated Macrophages, TAM),在促进TNBC转移中起了重要作用。乳腺癌作为一种实体肿瘤,往往处于缺氧环境中。低氧环境能够促进癌细胞的转移,然而低氧环境中巨噬细胞在促进肿瘤转移中的作用仍然不清楚。在该研究中,THP1细胞被诱导成TAM,经过缺氧培养后,通过Transwell实验检测其促进三阴乳腺癌细胞BT-549和MDA-MB-231的细胞迁移能力;通过尾静脉注射,将MDA-MB-231细胞移植于祼鼠体内,CT扫描,分析了TAM促进TNBC细胞的器官转移能力;通过ELISA实验检测低氧对TAM分泌的肿瘤转移相关因子的影响,通过GDSC在线软件分析了CCL22受体CCR4和其他CCR在乳腺癌组织与正常组织中表达的差异。结果表明低氧条件下巨噬细胞通过分泌CCL22的表达来促进三阴乳腺癌细胞迁移:经过缺氧培养后的TAM显著增强了TNBC细胞迁移能力,以及促进癌细胞在体内向肺转移;低氧诱导TAM分泌CCL22;CCL22受体CCR4在乳腺癌组织中的表达显著高于在正常组织中的。  相似文献   

4.
Endogenous human microRNAs that suppress breast cancer metastasis   总被引:6,自引:0,他引:6  
  相似文献   

5.
Involvement of chemokine receptors in breast cancer metastasis   总被引:344,自引:0,他引:344  
Breast cancer is characterized by a distinct metastatic pattern involving the regional lymph nodes, bone marrow, lung and liver. Tumour cell migration and metastasis share many similarities with leukocyte trafficking, which is critically regulated by chemokines and their receptors. Here we report that the chemokine receptors CXCR4 and CCR7 are highly expressed in human breast cancer cells, malignant breast tumours and metastases. Their respective ligands CXCL12/SDF-1alpha and CCL21/6Ckine exhibit peak levels of expression in organs representing the first destinations of breast cancer metastasis. In breast cancer cells, signalling through CXCR4 or CCR7 mediates actin polymerization and pseudopodia formation, and subsequently induces chemotactic and invasive responses. In vivo, neutralizing the interactions of CXCL12/CXCR4 significantly impairs metastasis of breast cancer cells to regional lymph nodes and lung. Malignant melanoma, which has a similar metastatic pattern as breast cancer but also a high incidence of skin metastases, shows high expression levels of CCR10 in addition to CXCR4 and CCR7. Our findings indicate that chemokines and their receptors have a critical role in determining the metastatic destination of tumour cells.  相似文献   

6.
7.
Metastasis entails numerous biological functions that collectively enable cancerous cells from a primary site to disseminate and overtake distant organs. Using genetic and pharmacological approaches, we show that the epidermal growth factor receptor ligand epiregulin, the cyclooxygenase COX2, and the matrix metalloproteinases 1 and 2, when expressed in human breast cancer cells, collectively facilitate the assembly of new tumour blood vessels, the release of tumour cells into the circulation, and the breaching of lung capillaries by circulating tumour cells to seed pulmonary metastasis. These findings reveal how aggressive primary tumorigenic functions can be mechanistically coupled to greater lung metastatic potential, and how such biological activities may be therapeutically targeted with specific drug combinations.  相似文献   

8.
9.
10.
Metastasis is a major factor in the malignancy of cancers, and is often responsible for the failure of cancer treatment. Anoikis (apoptosis resulting from loss of cell-matrix interactions) has been suggested to act as a physiological barrier to metastasis; resistance to anoikis may allow survival of cancer cells during systemic circulation, thereby facilitating secondary tumour formation in distant organs. In an attempt to identify metastasis-associated oncogenes, we designed an unbiased, genome-wide functional screen solely on the basis of anoikis suppression. Here, we report the identification of TrkB, a neurotrophic tyrosine kinase receptor, as a potent and specific suppressor of caspase-associated anoikis of non-malignant epithelial cells. By activating the phosphatidylinositol-3-OH kinase/protein kinase B pathway, TrkB induced the formation of large cellular aggregates that survive and proliferate in suspension. In mice, these cells formed rapidly growing tumours that infiltrated lymphatics and blood vessels to colonize distant organs. Consistent with the ability of TrkB to suppress anoikis, metastases--whether small vessel infiltrates or large tumour nodules--contained very few apoptotic cells. These observations demonstrate the potent oncogenic effects of TrkB and uncover a specific pro-survival function that may contribute to its metastatic capacity, providing a possible explanation for the aggressive nature of human tumours that overexpress TrkB.  相似文献   

11.
12.
Stromal cell-derived factor-1 and its receptor CXC chemokine receptor-4 (CXCR4) have been implicated in breast cancer metastasis. A significant association between HER2 and CXCR4 expression has been observed in human breast tumor tissues, and overexpression of CXCR4 is essential for HER2-mediated tumor metastasis. Moreover, CXCR4 expression is low in normal breast tissues and high in malignant tumors, suggesting that a blockade of CXCR4 may limit tumor metastasis. The present study investigated the action of a synthetic antagonist 21-mer peptide derived from viral macrophage inflammatory protein II against CXCR4 (NT21MP) in inhibiting metastasis in vitro and in vivo. The results showed that chemotaxis of SKBR3 cells toward SDF-1α was reduced by NT21MP in a dose-dependent manner (P < 0.05). NT21MP inhibited tumor growth at 500 μg/kg and in combination with Herceptin, the anti-HER2 antibody. The in vivo metastatic assay showed that NT21MP significantly inhibited pulmonary metastasis, and the number of metastatic tumor nodes on the surface of the lung was greatly decreased. Compared with the saline-treated control group, PCNA expression was dose-dependently decreased by NT21MP, the percentage of apoptotic cells was increased, and CXCR4 mRNA and protein expression were downregulated. In conclusion, NT21MP inhibits cellular prolifer-ation, promotes apoptosis by downregulating CXCR4 expression, and suppresses the progression of primary and metastatic tumors. CXCR4 may be a useful therapeutic target for breast cancer, and NT21MP may serve as a potential target drug for the treatment of breast cancer metastasis.  相似文献   

13.
14.
Lysyl oxidase is essential for hypoxia-induced metastasis   总被引:1,自引:0,他引:1  
Metastasis is a multistep process responsible for most cancer deaths, and it can be influenced by both the immediate microenvironment (cell-cell or cell-matrix interactions) and the extended tumour microenvironment (for example vascularization). Hypoxia (low oxygen) is clinically associated with metastasis and poor patient outcome, although the underlying processes remain unclear. Microarray studies have shown the expression of lysyl oxidase (LOX) to be elevated in hypoxic human tumour cells. Paradoxically, LOX expression is associated with both tumour suppression and tumour progression, and its role in tumorigenesis seems dependent on cellular location, cell type and transformation status. Here we show that LOX expression is regulated by hypoxia-inducible factor (HIF) and is associated with hypoxia in human breast and head and neck tumours. Patients with high LOX-expressing tumours have poor distant metastasis-free and overall survivals. Inhibition of LOX eliminates metastasis in mice with orthotopically grown breast cancer tumours. Mechanistically, secreted LOX is responsible for the invasive properties of hypoxic human cancer cells through focal adhesion kinase activity and cell to matrix adhesion. Furthermore, LOX may be required to create a niche permissive for metastatic growth. Our findings indicate that LOX is essential for hypoxia-induced metastasis and is a good therapeutic target for preventing and treating metastases.  相似文献   

15.
Syk is a protein tyrosine kinase that is widely expressed in haematopoietic cells. It is involved in coupling activated immunoreceptors to downstream signalling events that mediate diverse cellular responses including proliferation, differentiation and phagocytosis. Syk expression has been reported in cell lines of epithelial origin, but its function in these cells remains unknown. Here we show that Syk is commonly expressed in normal human breast tissue, benign breast lesions and low-tumorigenic breast cancer cell lines. Syk messenger RNA and protein, however, are low or undetectable in invasive breast carcinoma tissue and cell lines. Transfection of wild-type Syk into a Syk-negative breast cancer cell line markedly inhibited its tumour growth and metastasis formation in athymic mice. Conversely, overexpression of a kinase-deficient Syk in a Syk-positive breast cancer cell line significantly increased its tumour incidence and growth. Suppression of tumour growth by the reintroduction of Syk appeared to be the result of aberrant mitosis and cytokinesis. We propose that Syk is a potent modulator of epithelial cell growth and a potential tumour suppressor in human breast carcinomas.  相似文献   

16.
乳腺癌相关转移基因的研究进展   总被引:1,自引:0,他引:1  
目的综述肿瘤转移基因在乳腺癌中的研究进展。方法采用文献回顾的方法,对目前国内外肿瘤转移基因在乳腺癌中的研究状况加以分析与综述。结果肿瘤转移基因与乳腺癌的发生、转移及预后相关。结论对肿瘤转移基因的深入研究有助于进一步深化对乳腺癌生物学行为的认识,为肿瘤转移的分子诊断和基因治疗提供新的思路。  相似文献   

17.
Bone metastases are a frequent complication of many cancers that result in severe disease burden and pain. Since the late nineteenth century, it has been thought that the microenvironment of the local host tissue actively participates in the propensity of certain cancers to metastasize to specific organs, and that bone provides an especially fertile 'soil'. In the case of breast cancers, the local chemokine milieu is now emerging as an explanation for why these tumours preferentially metastasize to certain organs. However, as the inhibition of chemokine receptors in vivo only partially blocks metastatic behaviour, other factors must exist that regulate the preferential metastasis of breast cancer cells. Here we show that the cytokine RANKL (receptor activator of NF-kappaB ligand) triggers migration of human epithelial cancer cells and melanoma cells that express the receptor RANK. RANK is expressed on cancer cell lines and breast cancer cells in patients. In a mouse model of melanoma metastasis, in vivo neutralization of RANKL by osteoprotegerin results in complete protection from paralysis and a marked reduction in tumour burden in bones but not in other organs. Our data show that local differentiation factors such as RANKL have an important role in cell migration and the tissue-specific metastatic behaviour of cancer cells.  相似文献   

18.
Oestrogen receptor (ER) is a good prognostic marker for the treatment of breast cancers. Upregulation of metastatic tumour antigen 1 (MTA1) is associated with the invasiveness and metastatic potential of several human cancers and acts as a co-repressor of nuclear ER-alpha. Here we identify a naturally occurring short form of MTA1 (MTA1s) that contains a previously unknown sequence of 33 amino acids with an ER-binding motif, Leu-Arg-Ile-Leu-Leu (LRILL). MTA1s localizes in the cytoplasm, sequesters ER in the cytoplasm, and enhances non-genomic responses of ER. Deleting the LRILL motif in MTA1s abolishes its co-repressor function and its interaction with ER, and restores nuclear localization of ER. Dysregulation of human epidermal growth factor receptor-2 in breast cancer cells enhances the expression of MTA1s and the cytoplasmic sequestration of ER. Expression of MTA1s in breast cancer cells prevents ligand-induced nuclear translocation of ER and stimulates malignant phenotypes. MTA1s expression is increased in human breast tumours with no or low nuclear ER. The regulation of the cellular localization of ER by MTA1s represents a mechanism for redirecting nuclear receptor signalling by nuclear exclusion.  相似文献   

19.
W R Miller  W N Scott  R Morris  H M Fraser  R M Sharpe 《Nature》1985,313(5999):231-233
About one-third of human breast cancers require hormones for their continued growth and endocrine ablation or anti-hormone therapy can cause regression of these tumours. As a consequence, ovariectomy in premenopausal women or administration of an anti-oestrogen (tamoxifen) in postmenopausal women represent major options for treatment of metastatic breast cancer. Alternatively, chronic administration of agonistic analogues of luteinizing hormone-releasing hormone (LHRH) causes regression of mammary tumours in experimental animals, and such treatment has shown promise in a small series of premenopausal women with advanced breast cancer. It has been assumed that these results were achieved by suppressing the pituitary-ovarian axis, as the treatment causes a reduction in circulating levels of gonadal steroids similar to that produced by castration. However, LHRH agonists can exert major effects on tissues other than the pituitary in animals and in the human. Such findings, coupled with reports of LHRH in human breast milk and immunohistochemical evidence for the presence of LHRH-like activity in some human breast tumours, prompted us to test whether LHRH agonists could have direct antitumour effects. We now report major direct effects of LHRH and its agonists on the growth of breast tumour cells in culture.  相似文献   

20.
Malignant transformation, driven by gain-of-function mutations in oncogenes and loss-of-function mutations in tumour suppressor genes, results in cell deregulation that is frequently associated with enhanced cellular stress (for example, oxidative, replicative, metabolic and proteotoxic stress, and DNA damage). Adaptation to this stress phenotype is required for cancer cells to survive, and consequently cancer cells may become dependent upon non-oncogenes that do not ordinarily perform such a vital function in normal cells. Thus, targeting these non-oncogene dependencies in the context of a transformed genotype may result in a synthetic lethal interaction and the selective death of cancer cells. Here we used a cell-based small-molecule screening and quantitative proteomics approach that resulted in the unbiased identification of a small molecule that selectively kills cancer cells but not normal cells. Piperlongumine increases the level of reactive oxygen species (ROS) and apoptotic cell death in both cancer cells and normal cells engineered to have a cancer genotype, irrespective of p53 status, but it has little effect on either rapidly or slowly dividing primary normal cells. Significant antitumour effects are observed in piperlongumine-treated mouse xenograft tumour models, with no apparent toxicity in normal mice. Moreover, piperlongumine potently inhibits the growth of spontaneously formed malignant breast tumours and their associated metastases in mice. Our results demonstrate the ability of a small molecule to induce apoptosis selectively in cells that have a cancer genotype, by targeting a non-oncogene co-dependency acquired through the expression of the cancer genotype in response to transformation-induced oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号