首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Phorbol ester and diacylglycerol induce protein phosphorylation at tyrosine   总被引:2,自引:0,他引:2  
T Gilmore  G S Martin 《Nature》1983,306(5942):487-490
The phorbol ester 12-O-tetradecanoyl-phorbol-13-acetate (TPA) is an efficient tumour promoter in vivo. In vitro, TPA activates the phospholipid- and Ca2+-dependent protein kinase, kinase C. This activation is believed to reflect the structural similarity between TPA and diacylglycerol, the endogenous protein kinase C activator which is produced in vivo by hydrolysis of phosphatidylinositol (reviewed in ref. 3). Protein kinase C phosphorylates protein substrates at serine and threonine residues in vitro. The effects of TPA on cultured fibroblasts--including enhanced hexose uptake, disruption of actin stress fibres and growth stimulation--are very similar to those induced by certain retrovirus transforming proteins and by peptide growth factors such as epidermal growth factor (EGF), platelet-derived growth factor (PDGF) and multiplication-stimulating activity (MSA). These transforming proteins and mitogenic agents seem to act by inducing tyrosine-specific protein phosphorylation. Such observations suggested that some of the effects of TPA in vivo may be mediated by protein phosphorylation at tyrosine residues. A 42,000-molecular weight (42 K) polypeptide was previously shown to be phosphorylated at tyrosine in cells transformed by avian sarcoma viruses and in cells stimulated by EGF, PDGF or MSA (J. Cooper, personal communication and refs 11 and 12; this polypeptide was originally designated 43 K or spot n in ref. 10). We show here that this polypeptide also becomes phosphorylated at tyrosine in cells treated with TPA. Furthermore, exogenously added diacylglycerol likewise stimulates the phosphorylation of this protein at tyrosine.  相似文献   

2.
Autophosphorylation sites on the epidermal growth factor receptor   总被引:10,自引:0,他引:10  
J Downward  P Parker  M D Waterfield 《Nature》1984,311(5985):483-485
The epidermal growth factor (EGF) receptor is a tyrosine-specific protein kinase with autophosphorylating activity. A 300 amino acid-long region of the receptor's cytoplasmic domain matches (35-90% homology) sequences of transforming proteins from the src family and includes a putative nucleotide binding site. Several of the src transforming proteins have tyrosine kinase activity, but v-erb-B, which appears to be a truncated EGF receptor, is virtually identical to the receptor over this region and yet lacks detectable kinase activity. To locate possible acceptor sites in the v-erb-B protein, we have mapped these sites in the human EGF receptor. We report here that three tyrosine sites near the C-terminus are phosphorylated in vitro. In intact cells, we find that EGF stimulates phosphorylation of several sites, the tyrosine 14 residues from the C-terminus being modified the most extensively. The equivalent site is absent in the v-erb-B protein of avian erythroblastosis virus (AEV) and may influence tyrosine kinase activity.  相似文献   

3.
K L Gould  P Nurse 《Nature》1989,342(6245):39-45
The cdc2+ protein kinase (pp34) is found to be phosphorylated on tyrosine as well as serine and threonine residues in exponentially growing Schizosaccharomyces pombe. At mitosis, the level of pp34 phosphorylation on both threonine and tyrosine residues decreases. The single detectable site of tyrosine phosphorylation in pp34 has been mapped to Tyr 15, a residue within the presumptive ATP-binding domain. Substitution of this tyrosine by phenylalanine advances cells prematurely into mitosis, establishing that tyrosine phosphorylation/dephosphorylation directly regulates pp34 function.  相似文献   

4.
Epidermal growth factor-dependent phosphorylation of lipocortin   总被引:35,自引:0,他引:35  
R B Pepinsky  L K Sinclair 《Nature》1986,321(6065):81-84
Lipocortin-like proteins are a family of steroid-induced inhibitors of phospholipase activity with potential anti-inflammatory activity. Related proteins have been detected in a variety of tissues and species. The best characterized form is a protein of relative molecular mass (Mr) approximately 40,000 (40K), which is phosphorylated in vivo by protein tyrosine kinases and by protein serine-threonine kinases. It has been proposed that the phospholipase inhibitory activity of lipocortin can be regulated by its phosphorylation. In the A431 cell line, a protein of approximately 35K is phosphorylated by the protein tyrosine kinase activity of the epidermal growth factor (EGF) receptor. Here we report that human lipocortin is phosphorylated near its amino terminus by the EGF receptor/kinase. By peptide mapping and immunological analyses, we show that lipocortin and the endogenous 35K substrate for the EGF receptor/kinase from A431 cells are the same protein.  相似文献   

5.
Phosphorylation of c-jun mediated by MAP kinases   总被引:142,自引:0,他引:142  
  相似文献   

6.
Fission yeast p107wee1 mitotic inhibitor is a tyrosine/serine kinase.   总被引:65,自引:0,他引:65  
C Featherstone  P Russell 《Nature》1991,349(6312):808-811
The fission yeast wee1+ gene product is a dose-dependent, negative regulator of entry into mitosis. wee1+ encodes a protein of relative molecular mass 107,000 (Mr 107K), the C-terminal third of which has strong similarities with the serine/threonine protein kinase family. Here we report that p107wee1 immune complexes phosphorylate p107wee1 equally on serine and tyrosine residues, and also phosphorylate an exogenous substrate, angiotensin II, on tyrosine. Both kinase activities are attributable to p107wee1 because they are also observed when wee1+ is expressed in heterologous systems; both are abolished by a point mutation in the ATP-binding domain, and both behave like an asymmetric monomer of Mr114K on gel filtration and density-gradient centrifugation. Thus the wee1+ gene product is representative of a novel class of protein kinase that phosphorylates both serine and tyrosine residues.  相似文献   

7.
Anti-pp60src antibodies are substrates for EGF-stimulated protein kinase   总被引:10,自引:0,他引:10  
J E Kudlow  J E Buss  G N Gill 《Nature》1981,290(5806):519-521
Epidermal growth factor (EGF) stimulates phosphorylation of its own receptor at a tyrosine residue. Similarly, the viral gene product pp60src, which is responsible for cellular transformation by avian sarcoma virus (ASV), phosphorylates itself and immunoglobulin directed against pp60src at tyrosine residues. This unusual site of phosphorylation catalysed by two membrane-associated protein kinases involved in growth control prompted us to study the immunological relatedness of the EGF-stimulated protein kinase and the pp60src. Using anti-pp60src antisera, we attempted to immunoprecipitate the EGF-stimulated protein kinase solubilized from plasma membranes. We report here that neither the EGF-stimulated kinase nor the EGF receptor were immunoprecipitable by anti-pp60src sera. However, anti-pp60src IgG served as a specific substrate for the EGF-stimulated kinase, suggesting a close similarity between the EGF-stimulated kinase and pp60src.  相似文献   

8.
N Gómez  P Cohen 《Nature》1991,353(6340):170-173
Mitogen activated protein (MAP) kinases (MAPKs) are a family of protein-serine/threonine kinases activated as an early intracellular response to a variety of hormones and growth factors. They are unique in requiring both serine/threonine and tyrosine phosphorylation to become active and are the only examples of protein-serine/threonine kinases activated by tyrosine phosphorylation. Nerve growth factor (NGF) promotes differentiation of phaeochromocytoma (PC12) cells, which respond by conversion within hours from a chromaffin-like to a sympathetic neuron-like phenotype. NGF stimulation of PC12 cells increases the activity of two protein kinases by greater than 20-fold within minutes, both strikingly similar to MAPKs. They are inactivated by either protein-tyrosine phosphatases or the protein-serine/threonine phosphatase termed protein phosphatase 2A (ref. 8), they activate protein S6 kinase-II (refs 9, 10), and they phosphorylate identical threonine residues on myelin basic protein (our unpublished results) to those phosphorylated by other MAPKs. Immunological data indicate that these protein kinases, termed peak-I and peak-II (Fig. 1a) are probably ERK2 and ERK1, respectively, two widely expressed MAPK isoforms. Here we identify the 'MAP kinase kinases' (MAPKKs) in PC12 cells which are activated by NGF and report that MAPKKs are dependent on serine/threonine phosphorylation for activity and promote phosphorylation of serine/threonine and tyrosine residues on MAPKs.  相似文献   

9.
10.
Malignant transformation by mammalian RNA sarcoma viruses has previously been shown to involve a reduction in receptor sites for a well characterized 6,000-molecular weight (MW) growth-promoting substance, designated epidermal growth factor (EGF). Although Abelson murine leukaemia virus (AbLV) resembles sarcoma viruses in its ability to transform embryo fibroblasts in cell culture, AbLV induces a rapid B-cell lymphoid leukaemia rather than fibrosarcomas in vivo. The major translational product of AbLV is a highly phosphorylated polyprotein of MW 120,000 which exhibits an associated tyrosine-specific protein kinase activity and probable transforming function. We show here that AbLV transformation resembles transformation by RNA sarcoma viruses with respect to the abolition of EGF-binding sites. EGF binding is restored to control levels following loss of polyprotein expression in morphological revertants of AbLV-transformed clones and remains uninfluenced in cell lines infected with transformation-defective (td) AbLV mutants encoding polyproteins deficient in protein kinase activity. These findings indicate that AbLV transformation involves a polyprotein-associated, tyrosine-specific protein kinase activity which mediates its effect through a mechanism resulting directly or indirectly in the abolition of EGF-binding sites.  相似文献   

11.
12.
Thrombopioetin (TPO), the critical regulator of platelet production, acts by binding to its cell surface receptor, c-Mpl. Yeast two-hybrid screening was performed to isolate the proteins interacting with the cytoplasmic domain of c-Mpl. 48 positive clones were isolated from 5 × 106 independent transformants. The results of sequence analysis demonstrate that they represent 13 different protein encoding sequences. Among them there are a partial coding sequence of serine/threonine protein kinase SGK (serum and glucocorticoid-inducible kinase) and 14-3-3 theta protein partial coding sequence. GST-pull-down assay and co-immunoprecipitation in mammal cells have confirmed the interaction between these two proteins and c-Mpl. By constructing a series of deleted c-Mpl cytoplasmic domain, the interaction region in c-Mpl cytoplasmic tail was localized in amino acids 523–554. At the same time, the directed interaction between SGK and 14-3-3 proteins also has been verified by yeast two-hybrid assay. The present note is the first time to report that two proteins act with c-Mpl at the same time and put forward that SGK and 14-3-3 protein may be involved in the serine/threonine phosphorylation mechanism for signal transduction.  相似文献   

13.
MAP2 kinase and 70K S6 kinase lie on distinct signalling pathways.   总被引:1,自引:0,他引:1  
L M Ballou  H Luther  G Thomas 《Nature》1991,349(6307):348-350
Activation of protein synthesis is required for quiescent cells to transit the cell cycle, and seems to be mediated in part by phosphorylation of the 40S ribosomal protein, S6. A mitogen-activated S6 kinase of relative molecular mass 70,000 (70K) has been isolated from mouse fibroblasts as well as from avian, rat and rabbit tissues. Comparison of complementary DNA sequences shows that this enzyme is distinct from S6 kinase II (92K) found in Xenopus eggs and fibroblasts. Both kinases are activated by serine/threonine phosphorylation, suggesting that at least one serine/threonine kinase links receptor tyrosine kinases with S6 kinases. A candidate for this link is MAP2 kinase, which is rapidly activated by tyrosine/threonine phosphorylation following mitogenic stimulation. Incubation of MAP2 kinase from insulin-treated 3T3-L1 adipocytes with phosphatase-inactivated S6 kinase II from Xenopus leads to partial reactivation and phosphorylation of the enzyme. These and other findings have led to the suggestion that MAP2 kinase also activates the 70K S6 kinase. Here we refute this idea by showing that the two kinases lie on distinct signalling pathways.  相似文献   

14.
42,000-molecular weight EGF receptor has protein kinase activity   总被引:1,自引:0,他引:1  
M Basu  R Biswas  M Das 《Nature》1984,311(5985):477-480
The epidermal growth factor (EGF) receptor and other growth factor receptors have been shown to possess tyrosine-specific protein kinase activity. Before the demonstration of kinase activity in growth factor receptors, tyrosine kinases of molecular weight (MW) 60,000 (60K) were found to be encoded by the src oncogene and other oncogenes related to src. Our earlier work on intracellular processing of the EGF receptor, a 170,000-MW polypeptide, provided evidence for proteolytic separation of well defined structural domains, and suggested to us the possibility of separating functional domains by limited proteolysis. The isolation of such kinase domains should facilitate comparison of the receptor/kinase with other well characterized kinases including those of oncogene origin. We report here the identification of a catalytically functional 42K kinase derived proteolytically from the isolated human EGF receptor. This fragment, comparable in size to pp60src, carries the kinase ATP-binding site, and functions catalytically even after detachment from the EGF-binding site and the major autophosphorylation region.  相似文献   

15.
S Nada  M Okada  A MacAuley  J A Cooper  H Nakagawa 《Nature》1991,351(6321):69-72
The protein-tyrosine kinase activity of the proto-oncogene product p60c-src is negatively regulated by the phosphorylation of a tyrosine residue close to the C terminus, tyrosine 527. The phosphorylation might be catalysed by a so-far-unidentified tyrosine kinase, distinct from p60c-src. Recently we purified a protein-tyrosine kinase that specifically phosphorylates tyrosine 527 of p60c-src from neonatal rat brain. We have now confirmed the specificity of this enzyme by using a mutant p60c-src that has a phenylalanine instead of tyrosine 527, and cloned a complementary DNA that encodes the enzyme. The enzyme is similar to kinases of the src family in that it has two conserved regions, Src-homology regions 2 and 3, upstream of a tyrosine kinase domain. The amino-acid identity of each region is no more than 47%, however, and the enzyme lacks phosphorylation sites corresponding to tyrosines 416 and 527 of p60c-src and has no myristylation signal. These results suggest that this protein-tyrosine kinase, which might negatively regulate p60c-src, represents a new type of tyrosine kinase.  相似文献   

16.
T J O'Dell  E R Kandel  S G Grant 《Nature》1991,353(6344):558-560
Long-term potentiation (LTP) in the hippocampus is thought to contribute to memory formation. In the Ca1 region, LTP requires the NMDA (N-methyl-D-aspartate) receptor-dependent influx of Ca2+ and activation of serine and threonine protein kinases. Because of the high amount of protein tyrosine kinases in hippocampus and cerebellum, two regions implicated in learning and memory, we examined the possible additional requirement of tyrosine kinase activity in LTP. We first examined the specificity in brain of five inhibitors of tyrosine kinase and found that two of them, lavendustin A and genistein, showed substantially greater specificity for tyrosine kinase from hippocampus than for three serine-threonine kinases: protein kinase A, protein kinase C, and Ca2+/calmodulin kinase II. Lavendustin A and genistein selectively blocked the induction of LTP when applied in the bath or injected into the postsynaptic cell. By contrast, the inhibitors had no effect on the established LTP, on normal synaptic transmission, or on the neurotransmitter actions attributable to the actions of protein kinase A or protein kinase C. These data suggest that tyrosine kinase activity could be required postsynaptically for long-term synaptic plasticity in the hippocampus. As Ca2+ calmodulin kinase II or protein kinase C seem also to be required, the tyrosine kinases could participate postsynaptically in a kinase network together with serine and threonine kinases.  相似文献   

17.
Raf-1 activates MAP kinase-kinase.   总被引:56,自引:0,他引:56  
The normal cellular homologue of the acutely transforming oncogene v-raf is c-raf-1, which encodes a serine/threonine protein kinase that is activated by many extracellular stimuli. The physiological substrates of the protein c-Raf-1 are unknown. The mitogen-activated protein (MAP) kinases Erk1 and 2 are also activated by mitogens through phosphorylation of Erk tyrosine and threonine residues catalysed by a protein kinase of relative molecular mass 50,000, MAP kinase-kinase (MAPK-K). Here we report that MAPK-K as well as Erk1 and 2 are constitutively active in v-raf-transformed cells. MAPK-K partially purified from v-raf-transformed cells or from mitogen-treated cells can be deactivated by phosphatase 2A. c-Raf-1 purified after mitogen stimulation can reactivate the phosphatase 2A-inactivated MAPK-K over 30-fold in vitro. c-Raf-1 reactivation of MAPK-K coincides with the selective phosphorylation at serine/threonine residues of a polypeptide with M(r) 50,000 which coelutes precisely on cation-exchange chromatography with the MAPK-K activatable by c-Raf-1. These results indicate that c-Raf-1 is an immediate upstream activator of MAPK-K in vivo. To our knowledge, MAPK-K is the first physiological substrate of the c-raf-1 protooncogene product to be identified.  相似文献   

18.
Each of six peptides derived from the human epidermal growth factor (EGF) receptor very closely matches a part of the deduced sequence of the v-erb-B transforming protein of avian erythroblastosis virus (AEV). In all, the peptides contain 83 amino acid residues, 74 of which are shared with v-erb-B. The AEV progenitor may have acquired the cellular gene sequences of a truncated EGF receptor (or closely related protein) lacking the external EGF-binding domain but retaining the transmembrane domain and a domain involved in stimulating cell proliferation. Transformation of cells by AEV may result, in part, from the inappropriate acquisition of a truncated EGF receptor from the c-erb-B gene.  相似文献   

19.
Receptor protein-tyrosine kinases, through phosphorylation of specific tyrosine residues, generate high-affinity binding sites which direct assembly of multienzyme signalling complexes. Many of these signalling proteins, including phospholipase C gamma, GTPase-activating protein and phosphatidylinositol-3-OH kinase, contain src-homology 2 (SH2) domains, which bind with high affinity and specificity to tyrosine-phosphorylated sequences. The critical role played by SH2 domains in signalling has been highlighted by recent studies showing that mutation of specific phosphorylation sites on the platelet-derived growth factor receptor impair its association with phosphatidylinositol-3-OH kinase, preventing growth factor-induced mitogenesis. Here we report the solution structure of an isolated SH2 domain from the 85K regulatory subunit of phosphatidylinositol-3-OH kinase, determined using multidimensional nuclear magnetic resonance spectroscopy. The structure is characterized by a central region of beta-sheet flanked by two alpha-helices, with a highly flexible loop close to functionally important residues previously identified by site-directed mutagenesis.  相似文献   

20.
The protein products of several transforming retroviruses as well as the receptors for several hormones and growth factors, including insulin, have been shown to possess a protein kinase activity in vitro specific for tyrosine residues in protein substrates, including themselves. In the case of pp60src and the insulin receptor, autophosphorylation activates the tyrosine kinase activity towards exogenous substrates. Experiments indicate that, in vivo, many of these viruses or growth factors induce an increase in cellular phosphotyrosine, as well as an increase in the phosphorylation of serine residues on proteins, including ribosomal protein S6. It seems likely that some of the effects of insulin might be mediated by phosphorylation of intracellular substrates by its receptor. As the beta subunit of the receptor is a transmembrane protein, such phosphorylation could occur either while the receptor is still in the membrane or after its internalization. In various cell systems, internalized receptors are degraded, reshuttled back to the plasmalemma or maintained in a separate compartment before reinsertion in the membrane; shuttling of the insulin receptor could provide the opportunity for it to phosphorylate various intracellular components as part of its mechanism of signal transduction. To approach directly the question of whether the receptor can elicit a signal while acting at an intracellular location, we have microinjected Xenopus oocytes with the insulin receptor kinase. The results indicate that an S6 protein-serine kinase is stimulated or an S6 protein-serine phosphatase inhibited by the activity of the insulin receptor, supporting the concept that the insulin receptor acting within the cell can elicit a biological response.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号