共查询到18条相似文献,搜索用时 72 毫秒
1.
为解决大规模服务选取问题,提出了一种混合蚁群优化(HACO)算法.该算法先采用动态skyline服务查询过程过滤抽象服务类相关的冗余候选服务,以大力缩减空间提高查找效率,然后利用聚类设计动态构造图来引导蚂蚁的搜索方向,从而确定局部服务选取的搜索区域;基于已经确定的局部服务选取的搜索区域,利用启发式策略选取具体的组合服务.采用标准的真实数据集和综合产生的数据集对所提的方法进行试验评估,以及和最近提出的相关组合服务算法进行对比.实验结果在解的质量和处理时间方面效果显著. 相似文献
2.
3.
蚁群算法在排课问题中的应用研究 总被引:1,自引:0,他引:1
首先对蚁群算法和排课问题进行了简要概述,同时针对基本蚁群算法在解决排课问题中存在的弊端,提出了一种新的改进型蚁群算法——优劣蚁群算法,并对该算法的优越性进行了阐述。最后通过真实的排课数据对该算法与基本蚁群算法及其相应的改进算法的性能分析比较,应用该算法排课系统运行效率得到了提高,冲突现象明显减少,大大提高了教务管理人员的工作效率。 相似文献
4.
提出用蚁群算法求解车间调度问题.车间调度问题是典型的非确定性多项式时间难问题,蚁群算法是一种分布式进化计算方法,具有鲁棒性,正反馈,并行性等特点,而且算法简单.给出了用蚁群算法求解车间调度问题的流程,并且用经典的JSP的样例对算法进行了测试,实验结果表明用蚁群算法可以求解得到车间调度问题的最优解或近似最优解. 相似文献
5.
排课问题应该是教务处普遍关心的问题,如何解决排课中课程冲突问题是关键,工作的效率能否得到提高,系统运行通畅是保障教学调度的前提,当前排课系统不断在创新改进,那么蚁群算法是一种新型算法,该文是从蚁群算法、排课相关问题进行了阐述,并针对在排课过程中存在的弊端,提出了新改进的蚁群算法,并对其性能进行了分别比较和分析,在运用新的算法后大大的提高了工作效率,减少了在运行过程中的冲突情况。 相似文献
6.
摘 要:为解决大规模服务选取问题,本文提出了一种混合蚁群算法(HACO)。该算法先采用动态skyline服务查询过程过滤抽象服务类相关的冗余候选服务,以大力缩减空间提高查找效率,然后利用聚类设计动态构造图来引导蚂蚁的搜索方向,从而确定局部服务选取的搜索区域;基于已经确定的局部服务选取的搜索区域,利用启发式策略选取具体的组合服务。我们采用标准的真实数据集和综合产生的数据集对我们的方法进行试验评估,以及和最近提出的相关组合服务算法进行对比。实验结果在解的质量和处理时间方面效果显著 相似文献
7.
改进型蚁群算法及其在TSP中的应用 总被引:3,自引:0,他引:3
田富鹏 《兰州大学学报(自然科学版)》2005,41(2):78-80
介绍了蚁群算法的基本原理,并对其优、缺点作了详细的分析.基于蚁群算法的缺点--需要较长的计算时间,收敛速度慢,提出了一种改进型的蚁群算法,可以有效提高收敛速度,并把该算法应用到TSP问题中,取得了很好的效果. 相似文献
8.
蚁群优化算法及其应用 总被引:1,自引:0,他引:1
介绍了蚁群优化理论的产生和发展过程,重点阐述了蚁群算法的基本原理.给出了算法的TSP问题模型,讨论了其研究现状和应用现状.对下一步的研究工作做了展望. 相似文献
9.
针对传统的蚂蚁算法容易出现早熟和停滞现象,提出了一种自适应蚂蚁算法(Self-Adaptive Ant Colony Algorithm,SAACA)并选择典型TSP问题进行实验.结果表明:改进的蚁群算法具有更好的搜索全局最优解的能力以及更好的稳定性和收敛性. 相似文献
10.
蚁群算法是一种新的启发算法,能够有效的解决组合优化问题.本文通过蚁群算法在旅行商问题中的应用,分析了蚁群算法的设计思想.蚁群算法把可行解表示为蚂蚁走过的路线,通过信息素传递路线优劣的信息,并通过反馈机制强化这些信息,吸引蚂蚁向好的可行解靠拢,从而较快地找到最优解.并且所采用的方法对解决同类组合优化问题也有一定的启发. 相似文献
11.
提出一种改进的蚁群算法并将其应用于Web服务选择问题中.该算法使用非线性动态变化的伪随机比例选择参数及蚂蚁多重最优解随机加权路由选择算法控制蚁群的行为,使用5维Web服务质量向量和蚁群适应度函数评价蚂蚁构造的路径质量,蚂蚁根据其构造的路径质量进行信息素更新;该算法使蚁群在其解空间的进化能力得到很大的提高.实验证明,该算法在Web服务选择问题上比传统的蚁群算法效率更高. 相似文献
12.
蚁群算法是工程优化领域中新出现的一种仿生进化算法.首先介绍基本蚁群算法的原理和模型,然后评述近年来对蚁群算法的若干改进以及在许多新领域中的发展应用,最后对蚁群算法未来的发展和研究方向进行展望. 相似文献
13.
14.
针对蚁群算法容易出现停滞现象而不能对解空间进行全面搜索的问题,提出了一种蚁群-遗传融合的文本聚类算法.该算法将影响蚁群算法性能的4个参数作为遗传算法中的染色体进行编码,基于此又设计出相应的适应度函数以及选择交叉变异算子,通过多次迭代找出最优的参数组合,并将其应用到文本聚类问题上.经与经典的k均值聚类算法、基本的蚁群聚类算法的仿真比较,结果表明所提出算法的聚类效果更好,在3个测试集上的F度量值要比k均值聚类算法分别提高5.69%、48.60%、69.60%,所以更适合于处理较大规模的数据集. 相似文献
15.
基于混沌和蚁群算法测量圆度误差 总被引:1,自引:0,他引:1
提出一种基于混沌和蚁群算法计算圆度误差的方法,它将混沌搜索与蚁群算法相结合,在蚁群搜索完成后,利用混沌进行搜索,以提高搜索精度.简要地介绍了混沌和蚁群算法的基本原理,详细地描述了蚁群算法和混沌解决圆度误差评价问题的步骤.最后给出实验结果.仿真实验结果表明,这种方法可以有效、正确地评价圆度误差,克服了利用最小二乘法评价圆度误差的局部收敛问题. 相似文献
16.
最短路的蚁群算法收敛性分析 总被引:1,自引:0,他引:1
蚁群算法最初出发点是模拟蚂蚁觅食,蚂蚁可以利用局部信息素的变化找到从蚁穴到食物的最短路。对求解最短路问题的蚁群算法的收敛性进行了探索性分析,定理给出了寻找最短路的蚁群算法收敛的充分条件,并通过一个数值例子验证了该结果。 相似文献
17.
针对基本蚁群算法存在易陷入局部最优解、 收敛速度慢等缺点, 先引入节约矩阵 U 作为先验信息引导蚂
蚁搜索, 然后通过不同搜索时段采用不同的信息素挥发因子, 使算法更好地在“探索冶和“利用冶之间达到平衡,
并对较优解应用 2-opt 方法进行优化。 最后将改进后的蚁群算法应用到物流配送车辆路径优化问题中。 实验结
果表明, 相比基本蚁群算法, 改进的算法可得到更好的物流配送路径, 是解决物流配送路径优化问题的一种有
效方法, 可快速、 高效地对送货车辆线路进行调整, 满足消费者的需求。 相似文献
18.
基于群集智能的蚁群算法研究 总被引:1,自引:0,他引:1
指出了对蚁群算法为代表的群集智能的研究已经逐渐成为一个研究热点,介绍了蚁群算法的基本思想,分析了基本蚁群算法的特点和不足,针对这些不足讨论了多种改进方案,对改进方案与基本蚁群算法进行了比较,展望了该算法的工程应用前景. 相似文献