共查询到19条相似文献,搜索用时 78 毫秒
1.
现有的人脸年龄估计不能很好地兼顾全局-局部细节的特征表达,因而非受控人脸年龄估计的精度存在一定的提升空间。为解决此问题,提出了一种基于多分支卷积神经网络(convolutional neural networks,CNN)和多尺度特征融合的非受控人脸年龄估计方法。该方法根据人脸关键点对人脸图片剪裁得到包含人脸的全局图像和分别包含眼睛、鼻子、嘴巴的局部图像;使用多分支CNN网络提取对应的深层全局特征和局部特征,使用多尺度特征融合网络探索局部特征间的相关性信息从而进行局部特征选择;将融合的局部特征与全局特征拼接得到兼顾全局-局部细节的年龄特征;使用softmax损失函数优化模型进行人脸年龄估计。根据MORPH Album2、FG-NET、LAP2016人脸年龄数据集上的实验结果表明,提出的方法是有效的。 相似文献
2.
3.
4.
5.
针对基于标记分布学习的多重多元回归模型不能生成和人脸老化趋势一致标记分布的问题,提出自适应多重多元回归的人脸年龄估计方法.在为不同年龄生成具有适合标准差的离散高斯分布的基础上,采用偏最小二乘模型并有效地利用邻近年龄的人脸老化信息进行年龄估计.在MORPH人脸数据库上的对比实验结果表明,该文的人脸年龄估计模型具有更好的性能. 相似文献
6.
一种融合LBP纹理特征的多姿态人脸跟踪方法 总被引:1,自引:0,他引:1
提出一种改进的Camshift算法,它融合目标人脸的局部二值模式(LBP)纹理特征的T分量,以及肤色的HSV色彩空间的H分量的统计直方图来生成概率分布图像,实现纹理与肤色特征的有效融合;然后,利用Kalman滤波器来预测目标人脸的运动信息,快速地跟踪到目标人脸.实验表明,在复杂的跟踪条件下,这种算法比原始的仅采用颜色直方图信息的Meanshift和Camshift算法,在跟踪速度和精度上有显著的提高. 相似文献
7.
目的 人类年龄是人类识别和搜索任务中的重要特征,现有研究一般将人脸年龄估计视为传统的分类任务,忽略了年龄之间的有序特征,导致估计年龄与真实年龄之间的差距较大,因此,有必要寻找一种方法以缩小估计年龄与实际年龄的差距。方法 提出一种基于双有序性约束卷积神经网络模型(DO-CNN)的人脸图像年龄估计方法。首先,DO-CNN使用基于广义Logistic分布的有序回归模型作为卷积神经网络的分类器,并验证比其他有序分类器在人脸估计任务上的优越性;接着,进一步提出有序竞争比损失函数,在传统竞争比损失函数上,通过引入风险项使损失函数注意到预测年龄与真实年龄的误差,进而指导模型缩小估计年龄与真实年龄的差距。结果 在开源人脸图像年龄数据集FGNET和AgeDB上的对比实验显示:相比现有研究方法,DO-CNN分别提升约12%和3%的准确率,当允许的误差范围扩大后,该优势依然保持。此外,基于广义Logistic分布的有序回归分类器相比基于其他分布的有序回归分类器具有明显提升。结论 实验结果表明:基于双有序性约束的卷积神经网络模型可以明显提升人脸年龄估计的准确率,并减少年龄估计的实际误差。 相似文献
8.
人脸关键点检测是计算机视觉领域的一个重要分支,其检测精度将在很大程度上影响人脸识别和表情分析的结果.提出一种新的解决人脸关键点检测问题的方法,即H-GBDT.H-GBDT是一种基于GBDT决策树和HOG特征的人脸关键点检测算法,该算法是将人脸图像的HOG特征作为GBDT的输入,关键点的真实坐标作为GBDT的输出来训练预测模型,在该过程中每个关键点将分纵坐标和横坐标两次在GBDT中做回归运算,并经过不断的调整GBDT和HOG特征的参数来训练出最佳预测模型.在BioID、LFW、LFPW三种数据集上验证H-GBDT算法的性能.BioID是正脸数据集,实验结果表明H-GDBT在该数据集上的检测效果最佳,其检测误差基本上可控制在2%以内;而LFW和LFPW是自然场景下的数据集,H-GBDT在这两种数据集上的检测误差一般在2%~4%之间. 相似文献
9.
为了在实时的视频流中快速准确地检测人脸信息,本文采用了一种基于人脸局部LBP特征的检测方法,利用Open CV视觉开发库,在Visual Studio2010环境下采用C++语言开发了一套实时人脸检测系统,利用Open CV中的两个工具opencv_traincascade和opencv_createsamples对样本数据库AR和FERET中的图像进行学习训练,通过训练后的人脸和人眼分类器face.xml和eye.xml文件对实时图像进行人脸检测。测试表明,相较于传统采用Haar特征的人脸检测系统,本文采用的LBP特征人脸检测系统,在检测速度和准确性方面效果更好,本系统也可以在移动平台上部署。 相似文献
10.
基于人脸图像的年龄自动估计已经成为当前人脸识别领域的一个重要研究方向。首先通过非负矩阵分解(non-negative matrix factorization,NMF)算法对基矩阵或系数矩阵进行稀疏性约束,用形成的更具有局部表达能力的子空间对人脸图像数据进行表示。然后使用径向基函数神经网络进行训练和测试,提取包含在大多数人脸图像上的年龄信息来进行年龄估计。实验结果表明,具有稀疏性约束的非负矩阵分解算法对年龄估计问题具有良好的应用效果。 相似文献
11.
提出一种特征融合的人脸识别新方法.该方法将人脸图像中少量的低频离散余弦变换(DCT)系数用作人脸的频域特征;把人脸图像规则地分成多个子块,计算每个子块的局部二值图(LBP)编码直方图.这些子块的LBP直方图连接成一个空域全局直方图,作为人脸的描述向量.这个描述向量经过PCA降维后作为人脸的LBP特征.DCT特征和LBP特征分别归一化,然后进行特征融合.在ORL人脸库上的实验显示了所提方法比单独采用DCT或LBP特征的人脸识别有较好的性能改善. 相似文献
12.
典型相关分析(canonical correlation analysis,CCA)是一种寻求同一对象的2组变量之间最大相关性的多元统计方法,通过线性组合各组特征提取出对应的典型相关特征。但在简单地线性组合各组特征时,传统的CCA并未考虑特征的本征属性信息,无法区分主要特征和次要特征。充分运用特征本身的方差信息和提取后的典型相关信息,提出一种利用特征信息的加权典型相关分析(weighted canonical correlation analysis,WCCA)。一方面,利用方差信息对原始特征进行加权处理,使得原始特征的重要性更加具有区分度;另一方面,利用典型相关性对提取后的特征进行加权处理,既进一步增强了特征的主次关系,又保留了小相关性的特征信息。综合这2方面的特征信息,WCCA提取后的特征在分类和识别上更具有表现力。在ORL和AR人脸数据库以及对象识别数据库COIL20上的实验结果验证了该方法的有效性。 相似文献
13.
由于样本数常小于样本维数,传统的典型相关分析方法CCA(canonical correlation analysis)会产生小样本问题.为了解决这类问题,一种新的有监督特征抽取方法--二维典型相关分析2DCCA被提出.与传统CCA方法把二维图像矩阵拉成一维向量不同,2DCCA直接从图像矩阵中抽取特征,该方法有效地解决了小样本问题.但是在单特征下,CCA的类标编码对识别率会产生影响,在一维情况下,传统的类标编码使得CCA等价于LDA,从而限制了CCA抽取更多有效的识别特征.证明了在传统的类标编码时,2DCCA仍然与2DLDA等价.为了打破这种约束,提出了一种基于样本标号的2DCCA改进算法.在ORL和AR人脸库上的实验表明,提出的方法优于传统的2DCCA. 相似文献
14.
从融合多组特征的角度出发,以多重集典型相关分析算法(MCCA)为研究基础,通过稀疏保持自适应选择样本局部信息,然后通过在同类样本之间计算权重矩阵,将样本类别信息嵌入到算法中,再利用多种视图之间的交叉相关项,克服不同视图样本必须成对出现的局限,提出一种有样本缺失的稀疏交叉视图的多重集典型相关分析算法(multiset canonical sparse cross-view correlation analysis with missing samples,CSMCCAM)。在手写体数据集和CENPARMI数据库上验证本文的算法,得到CSMCCAM算法分类精确度优于LPMCCAM等典型相关分析算法,并且对缺失样本数目不敏感。 相似文献
15.
为了自动识别功能信号成分,通过对灰质数据和脑脊液数据独立成分的空间相关性进行典型相关分析,有效地解决了独立成分的排序问题.提出的方法不需要任何先验信息,能够稳健地识别与实验设计相关的功能信号成分,实现了对fMRI数据的盲分析.通过对临床真实fMRI数据的分析,阐明了提出方法的有效性及可靠性. 相似文献
16.
把样本分布信息融于特征提取过程将有助于提高特征的分类能力.利用模糊隶属度概念,提出一种基于模糊标号典型相关分析的特征提取新方法.构造模糊标号刻画样本的分布情况,并将其与典型相关分析结合,能提取综合灰度信息和分布信息的有效判别特征.此外,针对样本不足导致的小特征值包含较多干扰信息的问题,基于矩阵理论及双空间分析思想,进一步提出双空间模糊标号典型相关分析算法,缓解了过小特征值对算法性能的影响.在ORL和组合人脸数据库上的实验结果表明新特征具有良好的分类能力,证实了所提算法的有效性及应用价值. 相似文献
17.
为了提高在线学习平台教学资源推荐的有效性,通过数据挖掘方法对OBE教学资源进行特征提取,分别生成教学资源和用户个性推荐库,采用核典型相关分析算法对教学资源特征和用户个性特征进行分析,选择相关系数高的教学资源推荐给用户.实例仿真证明,相比于常用的教学资源推荐算法,本文算法的准确度更高,推荐资源更精准. 相似文献
18.
基于改进典型相关分析的混沌时间序列预测 总被引:1,自引:0,他引:1
典型相关分析是目前常用的研究两个变量集间相关性的统计方法.针对线性典型相关分析法不能揭示变量间非线性关系,因而不适用于混沌系统等问题,将核典型相关分析与径向基函数神经网络相结合,提出了一种改进的核典型相关分析方法以解决映射空间样本未知及逆矩阵求解困难等问题.首先利用两个径向基函数神经网络,通过训练使两个网络输出之间的相关系数达到最大,可同时得到两组典型相关变量.然后建立预测模型,对Lorenz混沌方程及大连月气温与降雨二变量混沌时间序列进行仿真,并与传统的线性回归预测方法进行比较,多组仿真结果证明了所述方法的有效性. 相似文献
19.
针对盲源分离问题,将互信息理论与典型相关分析理论相结合,提出了一种基于信息典型相关分析的盲源分离算法.该算法首先利用模式搜索法求解,得到混合信号向量的线性组合与混合信号向量延迟的线性组合之间互信息最大的信息典型向量,互信息计算中的概率密度函数由高斯核密度估计.然后,将信息典型向量依次与接收的混合信号数据阵相乘.完成对源信号的逐一抽取和分离.仿真实验结果表明,该算法不仅能有效分离包含超高斯信号成分的混合信号和包含亚高斯信号成分的混合信号,还能分离同时包含这2种成分的混合信号以及病态混合信号. 相似文献