首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
How a conformationally disordered polypeptide chain rapidly and efficiently achieves its well-defined native structure is still a major question in modern structural biology. Although much progress has been made towards rationalizing the principles of protein structure and dynamics, the mechanism of the folding process and the determinants of the final fold are not yet known in any detail. One protein for which folding has been studied in great detail by a combination of diverse techniques is hen lysozyme. In this article we review the present state of our knowledge of the folding process of this enzyme and focus in particular on recent experiments to probe some of its specific features. These results are then discussed in the context of the ‘new view’ of protein folding based on energy surfaces and land scapes. It is shown that a schematic energy surface for lysozyme folding, which is broadly consistent with our experimental data, begins to provide a unified model for protein folding through which experimental and theoretical ideas can be brought together.  相似文献   

2.
Most of fundamental studies on protein folding have been performed with small globular proteins consisting of a single domain. In vitro many of these proteins are well characterized by a reversible two-state folding scheme. However, the majority of proteins in the cell belong to the class of larger multi-domain proteins that often unfold irreversibly under in vitro conditions. This makes folding studies difficult or even impossible. In spite of these problems for many multi-domain proteins, folding has been investigated by classical refolding. Co-translational folding of nascent polypeptide chains when synthesized by ribosomes has also been studied. Single molecule techniques represent a promising approach for future studies on the folding of multi-domain proteins, and tremendous advances have been made in these techniques in recent years. In particular, fluorescence-based methods can contribute significantly to an understanding of the fundamental principles of multi-domain protein folding. Received 3 December 2008; accepted 23 December 2008  相似文献   

3.
In this review, the main concepts of protein folding, as deduced from both theoretical and experimental in vitro studies, are presented. The thermodynamic aspects from Anfinsen's postulate, Levinthal's paradox to the concept of folding funnel as proposed by Wolynes and coworkers are described. Concerning the folding pathway(s), particular attention is brought to bear on the early steps that initiate the process in the light of the results of the fast and even ultrafast techniques presently being used. The role of structural domains as folding units is discussed. Last, from the recent studies, it can be concluded that the main rules deduced from the in vitro folding studies are valid for the folding of a nascent polypeptide chain in vivo.  相似文献   

4.
Protein folding is an extremely active field of research where biology, chemistry, computer science and physics meet. Although the study of protein-folding intermediates in general and equilibrium intermediates in particular has grown considerably in recent years, many questions regarding the conformational state and the structural features of the various partially folded intermediate states remain unanswered. Performing kinetic measurements on proteins that have had their structures modified by site-directed mutagenesis, the so-called protein-engineering method, is an obvious way to gain fine structural information. In the present review, this method has been applied to a variety of proteins belonging to the lysozyme/α-lactalbumin family. Besides recombinants obtained by point mutations of individual critical residues, chimeric proteins in which whole structural elements (10 – 25 residues) from α-lactalbumin were inserted into a human lysozyme matrix are examined. The conformational properties of the equilibrium intermediate states are discussed together with the structural characterization of the partially unfolded states encountered in the kinetic folding pathway. Received 28 May 1998; received after revision 6 July 1998; accepted 6 July 1998  相似文献   

5.
The three-dimensional, atomic-resolution protein structures produced by X-ray crystallography over the past 50+ years have led to tremendous chemical understanding of fundamental biochemical processes. The pace of discovery in protein crystallography has increased greatly with advances in molecular biology, crystallization techniques, cryocrystallography, area detectors, synchrotrons and computing. While the methods used to produce single, well-ordered crystals have also evolved over the years in response to increased understanding and advancing technology, crystallization strategies continue to be rooted in trial-and-error approaches. This review summarizes the current approaches in protein crystallization and surveys the first results to emerge from the structural genomics efforts.Received 1 July 2003; received after revision 6 August 2003; accepted 22 August 2003  相似文献   

6.
During biosynthesis many membrane and secreted proteins are transported from the endoplasmic reticulum, through the Golgi and on to the plasma membrane in small transport vesicles. These transport vesicles have to undergo budding, movement, tethering, docking, and fusion at each organelle of the biosynthetic pathway. The transport protein particle (TRAPP) complex was initially identified as the tethering factor for endoplasmic reticulum (ER)—derived COPII vesicles, but the functions of TRAPP may extend to other areas of biology. Three forms of TRAPP complexes have been discovered to date, and recent advances in research have provided new insights on the structures and functions of TRAPP. Here we provide a comprehensive review of the recent findings in TRAPP biology.  相似文献   

7.
RNA is a key molecule in life, and comprehending its structure/function relationships is a crucial step towards a more complete understanding of molecular biology. Even though most of the information required for their correct folding is contained in their primary sequences, we are as yet unable to accurately predict both the folding pathways and active tertiary structures of RNA species. Ribozymes are interesting molecules to study when addressing these questions because any modifications in their structures are often reflected in their catalytic properties. The recent progress in the study of the structures, the folding pathways and the modulation of the small ribozymes derived from natural, self-cleaving, RNA motifs have significantly contributed to today’s knowledge in the field.  相似文献   

8.
9.
Many methods have been developed to analyse protein sequences and structures, although less work has been undertaken describing and comparing protein surfaces. Evolution can lead sequences to diverge or structures to change topology; nevertheless, surface determinants that are essential to protein function itself may be mantained. Moreover, different molecules could converge to similar functions by gaining specific surface determinants. In such cases, sequence or structure comparisons are likely to be inadequate in describing or identifying protein functions and evolutionary relationships among proteins. Surface analysis can identify function determinants that are independent of sequence or secondary structure and can therefore be a powerful tool to highlight cases of possible convergent or divergent evolution. This kind of approach can be useful for a better understanding of protein molecular and biochemical mechanisms of catalysis or interaction with a ligand, which are usually surface dependent. Protein surface comparison, when compared to sequence or structure comparison methods, is a hard computational challenge and evaluated methods allowing the comparison of protein surfaces are difficult to find. In this review, we will survey the current knowledge about protein surface similarity and the techniques to detect it.  相似文献   

10.
Developmental biology investigations have evolved from static studies of embryo anatomy and into dynamic studies of the genetic and cellular mechanisms responsible for shaping the embryo anatomy. With the advancement of fluorescent protein fusions, the ability to visualize and comprehend how thousands to millions of cells interact with one another to form tissues and organs in three dimensions (xyz) over time (t) is just beginning to be realized and exploited. In this review, we explore recent advances utilizing confocal and multi-photon time-lapse microscopy to capture gene expression, cell behavior, and embryo development. From choosing the appropriate fluorophore, to labeling strategy, to experimental set-up, and data pipeline handling, this review covers the various aspects related to acquiring and analyzing multi-dimensional data sets. These innovative techniques in multi-dimensional imaging and analysis can be applied across a number of fields in time and space including protein dynamics to cell biology to morphogenesis.  相似文献   

11.
Novel features in the tRNA-like world of plant viral RNAs   总被引:7,自引:0,他引:7  
tRNA-like domains are found at the 3' end of genomic RNAs of several genera of plant viral RNAs. Three groups of tRNA mimics have been characterized on the basis of their aminoacylation identity (valine, histidine and tyrosine) for aminoacyl-tRNA synthetases. Folding of these domains deviates from the canonical tRNA cloverleaf. The closest sequence similarities with tRNA are those found in valine accepting structures from tymoviruses (e.g. TYMV). All the viral tRNA mimics present a pseudoknotted amino acid accepting stem, which confers special structural and functional characteristics. In this review emphasis is given to newly discovered tRNA-like structures (e.g. in furoviruses) and to recent advances in the understanding of their three-dimensional architecture, which mimics L-shaped tRNA. Identity determinants in tRNA-like domains for aminoacylation are described, and evidence for their functional expression, as in tRNAs, is given. Properties of engineered tRNA-like domains are discussed, and other functional mimicries with tRNA are described (e.g. interaction with elongation factors and tRNA maturation enzymes). A final section reviews the biological role of the tRNA-like domains in amplification of viral genomes. In this process, in which the mechanisms can vary in specificity and efficiency according to the viral genus, function can be dependent on the aminoacylation properties of the tRNA-like domains and/or on structural properties within or outside these domains.  相似文献   

12.
A central dogma in biology is the conversion of genetic information into active proteins. The biosynthesis of proteins by ribosomes and the subsequent folding of newly made proteins represent the last crucial steps in this process. To guarantee the correct folding of newly made proteins, a complex chaperone network is required in all cells. In concert with ongoing protein biosynthesis, ribosome-associated factors can interact directly with emerging nascent polypeptides to protect them from degradation or aggregation, to promote folding into their native structure, or to otherwise contribute to their folding program. Eukaryotic cells possess two major ribosome-associated systems, an Hsp70/Hsp40-based chaperone system and the functionally enigmatic NAC complex, whereas prokaryotes employ the Trigger Factor chaperone. Recent structural insights into Trigger Factor reveal an intricate cradle-like structure that, together with the exit site of the ribosome, forms a protected environment for the folding of newly synthesized proteins. Received 29 June 2005; received after revision 4 August 2005; accepted 18 August 2005  相似文献   

13.
The investigation of biological macromolecules and the characteristics that determine their function has been of particular interest over the last decades. Here we overview some modern approaches for making the most of the 3-D protein structural information, with a distinctive emphasis on macromolecular crystallography and complementary techniques used to establish the structure-function relationship. A tight link between the biology of the cellular processes and the underlying chemistry of protein function governs the flow of the presented material. The reader will be lead through the basic principles of protein structure analysis and the means to capture the characteristics that portray the function. The techniques exploiting high-resolution data and allowing quantification of molecular motion and structure-activity relationship are given particular attention. Received 20 April 2007; accepted 20 April 2007  相似文献   

14.
Methionine adenosyltransferases (MATs) are the family of enzymes that synthesize the main biological methyl donor, S-adenosylmethionine. The high sequence conservation among catalytic subunits from bacteria and eukarya preserves key residues that control activity and oligomerization, which is reflected in the protein structure. However, structural differences among complexes with substrates and products have led to proposals of several reaction mechanisms. In parallel, folding studies begin to explain how the three intertwined domains of the catalytic subunit are produced, and to highlight the importance of certain intermediates in attaining the active final conformation. This review analyzes the available structural data and proposes a consensus interpretation that facilitates an understanding of the pathological problems derived from impairment of MAT function. In addition, new research opportunities directed toward clarification of aspects that remain obscure are also identified. Received 22 August 2008; received after revision 22 September 2008; accepted 26 September 2008  相似文献   

15.
Rotary ATPases are unique rotary molecular motors that function as energy conversion machines. Among all known rotary ATPases, F1-ATPase is the best characterized rotary molecular motor. There are many high-resolution crystal structures and the rotation dynamics have been investigated in detail by extensive single-molecule studies. In contrast, knowledge on the structure and rotation dynamics of V1-ATPase, another rotary ATPase, has been limited. However, recent high-resolution structural studies and single-molecule studies on V1-ATPase have provided new insights on how the catalytic sites in this molecular motor change its conformation during rotation driven by ATP hydrolysis. In this review, we summarize recent information on the structural features and rotary dynamics of V1-ATPase revealed from structural and single-molecule approaches and discuss the possible chemomechanical coupling scheme of V1-ATPase with a focus on differences between rotary molecular motors.  相似文献   

16.
17.
Inositol pyrophosphates: structure, enzymology and function   总被引:2,自引:0,他引:2  
The stereochemistry of the inositol backbone provides a platform on which to generate a vast array of distinct molecular motifs that are used to convey information both in signal transduction and many other critical areas of cell biology. Diphosphoinositol phosphates, or inositol pyrophosphates, are the most recently characterized members of the inositide family. They represent a new frontier with both novel targets within the cell and novel modes of action. This includes the proposed pyrophosphorylation of a unique subset of proteins. We review recent insights into the structures of these molecules and the properties of the enzymes which regulate their concentration. These enzymes also act independently of their catalytic activity via protein–protein interactions. This unique combination of enzymes and products has an important role in diverse cellular processes including vesicle trafficking, endo- and exocytosis, apoptosis, telomere length regulation, chromatin hyperrecombination, the response to osmotic stress, and elements of nucleolar function.  相似文献   

18.
A dynamic view of peptides and proteins in membranes   总被引:1,自引:0,他引:1  
Biological membranes are highly dynamic supramolecular arrangements of lipids and proteins, which fulfill key cellular functions. Relatively few high-resolution membrane protein structures are known to date, although during recent years the structural databases have expanded at an accelerated pace. In some instances the structures of reaction intermediates provide a stroboscopic view on the conformational changes involved in protein function. Other biophysical approaches add dynamic aspects and allow one to investigate the interactions with the lipid bilayers. Membrane-active peptides fulfill many important functions in nature as they act as antimicrobials, channels, transporters or hormones, and their studies have much increased our understanding of polypeptide-membrane interactions. Interestingly several proteins have been identified that interact with the membrane as loose arrays of domains. Such conformations easily escape classical high-resolution structural analysis and the lessons learned from peptides may therefore be instructive for our understanding of the functioning of such membrane proteins. Received 11 March 2008; received after revision 2 May 2008; accepted 5 May 2008  相似文献   

19.
Melanocortin control of energy balance: evidence from rodent models   总被引:1,自引:0,他引:1  
Regulation of energy balance is extremely complex, and involves multiple systems of hormones, neurotransmitters, receptors, and intracellular signals. As data have accumulated over the last two decades, the CNS melanocortin system is now identified as a prominent integrative network of energy balance controls in the mammalian brain. Here, we will review findings from rat and mouse models, which have provided an important framework in which to study melanocortin function. Perhaps most importantly, this review attempts for the first time to summarize recent advances in our understanding of the intracellular signaling pathways thought to mediate the action of melanocortin neurons and peptides in control of longterm energy balance. Special attention will be paid to the roles of MC4R/MC3R, as well as downstream neurotransmitters within forebrain and hindbrain structures that illustrate the distributed control of melanocortin signaling in energy balance. In addition, distinctions and controversy between rodent species will be discussed.  相似文献   

20.
Computational techniques are becoming increasingly important in structural and functional biology, in particular as tools to aid the interpretation of experimental results and the design of new systems. This review reports on recent studies employing a variety of computational approaches to unravel the microscopic details of the structure-function relationships in plastocyanin and other proteins belonging to the blue copper superfamily. Aspects covered include protein recognition, electron transfer and protein-solvent interaction properties of the blue copper protein family. The relevance of integrating diverse computational approaches to address the analysis of a complex protein system, such as a cupredoxin metalloprotein, is emphasized.Received 9 May 2003; received after revision 24 November 2003; accepted 28 November 2003  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号