首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
电动汽车用动力电池组SOC的神经网络估计   总被引:1,自引:0,他引:1  
针对电动汽车用动力电池组的SOC受充放电率、放电历程和温度等因素的影响,传统方法很难建立准确的数学模型,对电池组SOC进行研究,在对动力电池组进行不同工况充放电试验的基础上。建立了电池组的神经网络仿真模型。并分别采用电流输入,电压和电压梯度输入进行了仿真,实现了对电池组SOC的估计。与实验结果对比,仿真结果与实验基本吻合,验证了该方法的正确性。  相似文献   

2.
针对锂电池的特性,讨论了锂电池组电池管理系统的软硬件结构,在安时计量法的基础上,采用一种在线修正的SOC估算策略,设计了一个基于CAN总线的分布式电池管理系统,建立了系统及其各个组成单元的功能和结构,实现了数据监测、CAN通信、SOC估算、安全预警和温度控制功能.经试验验证,该系统工作稳定且能准确估算电池SOC.  相似文献   

3.
混合动力汽车电池管理系统SOC的评价   总被引:22,自引:3,他引:22  
为建立混合动力汽车电池管理系统的需要,探索镍氢电池荷电状态(SOC)的实时测量和估计方法,分析当前一般SOC定义在变电流放电情况下出现不适应的原因,和现有各种荷电状态估计方法存在的问题。为此,根据能量守恒原理,提出了一种新SOC的概念,使之能很好地适应混合动力汽车用电池在变电流状态下的实时荷电状态估计,并且基于新的SOC定义,建立电池荷电状态计算模型,进行仿真分析,简化计算,明确物理意义,提高了SOC的判断精度,减少混合动力汽车的复杂性,减少整车的成本,为混合动力汽车系统优化匹配提供了依据。  相似文献   

4.
搭建了混合动力汽车动力电池的性能实验平台,针对车辆实际行驶工况,在不同环境温度下对动力电池进行了相关充放电实验。利用实验系统采集到的动力电池电压与电流,采用自校正模糊神经网络控制算法对常温25℃下的动力电池荷电状态(State of Charge,SOC)进行计算,并与Arbin动力电池测试设备计算出的动力电池荷电状态进行了比较。理论分析和实验结果表明,采用自校正模糊神经网络控制算法计算出的电池SOC满足混合动力汽车电池SOC所需的精度要求。  相似文献   

5.
电池荷电状态(SOC)的准确估计在电池广泛应用的背景下日益重要,但是构建精确的物理模型十分困难,使用纯粹的数据驱动方法又容易因为电池个体差异性出现过拟合问题。针对这些问题,提出基于置信规则库(BRB)的方法对锂电池SOC的进行估计。该方法既允许专家通过经验知识克服数据驱动方法的过拟合问题,又能通过参数训练克服专家知识的不准确性。以某型磷酸铁锂(LiFePO-4)电池为例,对提出的方法进行了验证,并将其与神经网络进行了对比。结果表明,该方法估计SOC具有较高的精度,估计误差不超过10%,且可以克服传统神经网络方法存在的过拟合问题。  相似文献   

6.
锂电池具有高能量密度、循环寿命长等优点而被广泛应用于电动汽车动力装置,但车辆运行状况复杂多变,且电池内部呈现高度非线性的性质,导致电池荷电状态(SOC)难以准确计算。为优化锂电池SOC估计精度,构建结合Warburg元件的分数阶二阶RC模型,采用自适应遗传算法进行参数辨识;融合多新息理论和扩展卡尔曼滤波算法,提出基于多新息扩展卡尔曼滤波(MIEKF)的锂离子电池SOC估计算法,并利用试验数据验证该方法的有效性,为提高SOC估计精度和车载锂电池的循环使用寿命提供了新的方法途径和实践支撑。  相似文献   

7.
传统的电池荷电状态(State of Charge,SOC)估计方法是基于精确的数学模型,它依赖于大量的建模假设和经验参数,故模型预测SOC精度是有限的;为了提高动力电池SOC预测的精度,提出利用人工鱼群算法(Artificial Fish Swarm Algorithm,AFSA)优化径向基神经网络(RBF)对SOC进行预测,解决了RBF网络参数选择的不确定性;仿真实验结果表明:方法能方便、快速、准确地实现对SOC的预测,且具有实际使用价值。  相似文献   

8.
9.
电动汽车用电池SOC定义与检测方法   总被引:31,自引:1,他引:31  
为建立电动汽车电池管理系统的需要 ,探求铅酸电池荷电状态 (SOC)的实时测量和估计方法 ,分析了当前 SOC定义在变电流放电情况下出现不适应的原因 ,现有各种荷电状态检测方法的特点和存在的问题。在此基础上 ,对 SOC定义进行了修正 ,提出了“标定荷电状态”和“动态荷电状态”的概念 ,使之能很好地适应电动汽车用电池在变电流状态下的实时荷电状态估计。基于修正 SOC定义的电池荷电状态检测方法和计算模型具有简便、实用和可靠性  相似文献   

10.
针对锂动力电池荷电状态(State of Charge,SOC)估计策略,提出了一种基于模型误差EKF-HIF算法的SOC联合估计方法。首先,通过建立电池等效电路模型,利用BP神经网络(Back Propagation Neural Network,BPNN)预测该电池模型误差。其次,推导扩展卡尔曼滤波(EKF)和H∞滤波(H Infinity Filter,HIF)算法流程,根据模型误差选择不同算法进行SOC状态估计。最后,通过仿真验证了该联合估计算法的有效性和可行性。  相似文献   

11.
基于RC等效电路的动力电池SOC估计算法   总被引:1,自引:0,他引:1  
精确的动力电池剩余电量(SOC)是混合动力系统进行动力分配的重要依据,也是整车控制和降低使用成本的关键.因而,采用简化的RC电池等效电路,建立了电池的动态充、放电模型,把该模型转化为状态空间表达式.基于不同温度下的镍氢动力电池开路电压,通过混合脉冲功率性能(HPPC)测试方法测量,得到动力电池的动态工作内阻.根据电池的动态工作电流,在线实时估算动力电池的SOC.仿真及实验室测试结果表明,该方法的估算误差小于8%,验证了该SOC估算方法的有效性.  相似文献   

12.
基于电化学机理模型的锂离子电池参数辨识及SOC估计   总被引:1,自引:0,他引:1  
采用Fisher信息矩阵进行参数可辨识性分析,解决了参数的辨识问题,进而提出了基于简化电化学机理模型SP2D(simple pseudo-two-dimensional)的SOC(电池电量)在线估计方法。实验表明,该SOC估计方法较基于等效电路模型(一阶RC模型)的SOC估计方法,可将SOC估计的平均误差减小近30%,而在电池放电中后期更可减小达60%,有效解决了在电池全工作范围内的SOC高精度估计问题。  相似文献   

13.
随着电动汽车的高效发展,逐年递增的退役动力电池回收利用已刻不容缓,对电池进行精确、可靠的荷电状态(state of charge,SOC)估计是实现电池梯次利用的关键技术。传统估计方法均未考虑对老化电池影响较高的自放电因素,本文采用在二阶RC模型基础上考虑了自放电因素的GNL电路等效模型,通过脉冲放电对模型参数进行辨识。对相应的状态空间方程利用矩阵二次型方法进行离散化,并利用自适应无迹卡尔曼滤波算法对SOC进行实时估计及更新。在间歇恒流工况和变电流工况下以老化电池为实验对象对算法进行了对比验证,结果表明双卡尔曼滤波法在初值估计不准确的时候不能及时收敛到SOC真值附近并跟随,基于二阶RC模型的自适应滤波算法估计的误差在工况后期较大,基于GNL模型的自适应滤波算法对老化电池的估计精度较高,误差在0.5%之间。结果表明该方法可使状态估计值具有较小的误差和快速跟随性,满足了SOC 估计的实际需求。  相似文献   

14.
针对遗传算法(genetic algorithm,GA)存在收敛速度慢、易陷入局部最优以及难以实现在线应用的问题,面向如动力电池等效电路模型一类非线性较强、实时性要求高的模型辨识问题,提出一种能够快速缩小搜索空间,且有效避免陷入局部最优的在线快速搜索的优化辨识框架,实现电动汽车动力电池等效电路模型参数在线快速辨识,扩展全局搜索优化算法的应用范围.进一步,将此算法应用于电池剩余荷电状态(SOC)估算问题,提出基于改进GA参数辨识技术的无迹粒子滤波SOC估算方法(IGA-UPF).并将此SOC估算方法与基于最小二乘参数辨识技术的无迹粒子滤波的SOC估算算法(LS-UPF)作比较,结果验证了本文提出的在线快速参数辨识框架具有更好的模型参数辨识精度.  相似文献   

15.
为解决目前房车使用中存在的电池、 用电器的管理问题, 设计了一种以 Raspberry Pi 3B+为主控制器的房车电源管理系统, 该系统包括车载蓄电池监测模块和用电器监测模块。 电池监测模块利用电池专用监测芯片DS2438, 对电池组温度、 电压等车载蓄电池信息进行检测并统一管理, 完成单体蓄电池状态显示和故障报警提示; 用电器监测模块利用 RN8209 芯片检测房车用电器的电功率并及时通过主控制器对电器进行智能化管理。通过测试表明, 系统能准确测定电池和用电器的相关信息, 具有一定的实用性。 同时针对传统的充放电状态(SOC: State Of Charge)预测困难的问题, 提出了一种修正安时积分法,充分考虑了电池在实际使用中存在容量差的问题, 经 Matlab 仿真结果表明该方法有较高的估算精度, 可用于 SOC 估算策略。  相似文献   

16.
胡洁宇  吴松荣  陆凡  刘东 《科学技术与工程》2020,20(35):14530-14535
锂电池的荷电状态(state of charge, SOC)是电池管理系统(battery management system, BMS)对锂电池进行管理的重要指标。针对传统SOC估计方法存在的精度低、计算复杂和鲁棒性差等问题,本文提出了一种基于奇异值分解无迹卡尔曼滤波(singular value decomposition unscented Kalman filter, SVD-UKF)的SOC估计方法。该方法利用无迹变换(unscented transformation,UT)提高了计算精度的同时降低了计算量,并且克服了UKF在状态协方差矩阵P非半正定时会出现滤波发散的缺点,提高了算法的鲁棒性。实验结果表明,该算法能够快速收敛于真值,并且将估算误差降低至1%。  相似文献   

17.
为研究动力电池组内各单体电池的健康状态SOH(State of Health),对电池极化内阻和欧姆内阻特性进行分析.根据电池欧姆内阻提出相对健康状态的评价方法,并结合电池工作时内阻对端电压的影响,采用端电压对电池组内单体电池健康状态进行评价.最后进行了对比实验验证,实验结果证明了所提方法的准确性和可行性.  相似文献   

18.
A model based method which recruited the extended Kalman filter (EKF) to estimate the full state of charge (SOC) of Li-ion battery was proposed. The underlying dynamic behavior of the cell pack was described based on an equivalent circuit comprising of two capacitors and three resistors. Measurements in two tests were applied to compare the SOC estimated by model based EKF estimation with the SOC calculated by coulomb counting. Results have shown that the proposed method is able to perform a good estimation of the SOC of battery packs. Moreover, a corresponding battery management systems (BMS) including software and hardware based on this method was designed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号