首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper I challenge and adjudicate between the two positions that have come to prominence in the scientific realism debate: deployment realism and structural realism. I discuss a set of cases from the history of celestial mechanics, including some of the most important successes in the history of science. To the surprise of the deployment realist, these are novel predictive successes toward which theoretical constituents that are now seen to be patently false were genuinely deployed. Exploring the implications for structural realism, I show that the need to accommodate these cases forces our notion of “structure” toward a dramatic depletion of logical content, threatening to render it explanatorily vacuous: the better structuralism fares against these historical examples, in terms of retention, the worse it fares in content and explanatory strength. I conclude by considering recent restrictions that serve to make “structure” more specific. I show however that these refinements will not suffice: the better structuralism fares in specificity and explanatory strength, the worse it fares against history. In light of these case studies, both deployment realism and structural realism are significantly threatened by the very historical challenge they were introduced to answer.  相似文献   

2.
In this paper I elicit a prediction from structural realism and compare it, not to a historical case, but to a contemporary scientific theory. If structural realism is correct, then we should expect physics to develop theories that fail to provide an ontology of the sort sought by traditional realists. If structure alone is responsible for instrumental success, we should expect surplus ontology to be eliminated. Quantum field theory (QFT) provides the framework for some of the best confirmed theories in science, but debates over its ontology are vexed. Rather than taking a stand on these matters, the structural realist can embrace QFT as an example of just the kind of theory SR should lead us to expect. Yet, it is not clear that QFT meets the structuralist's positive expectation by providing a structure for the world. In particular, the problem of unitarily inequivalent representations threatens to undermine the possibility of QFT providing a unique structure for the world. In response to this problem, I suggest that the structuralist should endorse pluralism about structure.  相似文献   

3.
The view that the fundamental kind properties are intrinsic properties enjoys reflexive endorsement by most metaphysicians of science. But ontic structural realists deny that there are any fundamental intrinsic properties at all. Given that structuralists distrust intuition as a guide to truth, and given that we currently lack a fundamental physical theory that we could consult instead to order settle the issue, it might seem as if there is simply nowhere for this debate to go at present. However, I will argue that there exists an as-yet untapped resource for arguing for ontic structuralism – namely, the way that fundamentality is conceptualized in our most fundamental physical frameworks. By arguing that physical objects must be subject to the ‘Goldilock's principle’ if they are to count as fundamental at all, I argue that we can no longer view the majority of properties defining them as intrinsic. As such, ontic structural realism can be regarded as the most promising metaphysics for fundamental physics, and that this is so even though we do not yet claim to know precisely what that fundamental physics is.  相似文献   

4.
Kuhn argued against both the correspondence theory of truth and convergent realism. Although he likely misunderstood the nature of the correspondence theory, which it seems he wrongly believed to be an epistemic theory, Kuhn had an important epistemic point to make. He maintained that any assessment of correspondence between beliefs and reality is not possible, and therefore, the acceptance of beliefs and the presumption of their truthfulness has to be decided on the basis of other criteria. I will show that via Kuhn’s suggested epistemic values, specifically via problem-solving, his philosophy can be incorporated into a coherentist epistemology. Further, coherentism is, in principle, compatible with convergent realism. However, an argument for increasing likeness to truth requires appropriate historical continuity. Kuhn maintained that the history of science is full of discontinuity, and therefore, the historical condition of convergent realism is not satisfied.  相似文献   

5.
Several recent authors identify structural realism about scientific theories with the claim that the content of a scientific theory is expressible using its Ramsey sentence. Many of these authors have also argued that so understood, the view collapses into empiricist anti-realism, since an argument originally proposed by Max Newman in a review of Bertrand Russell’s The analysis of matter demonstrates that Ramsey sentences are trivially satisfied, and cannot make any significant claims about unobservables. In this paper I argue against both of these claims. Structural realism and Ramsey sentence realism are, in their most defensible versions, importantly different doctrines, and neither is committed to the premises required to demonstrate that they collapse into anti-realism.  相似文献   

6.
Extensional scientific realism is the view that each believable scientific theory is supported by the unique first-order evidence for it and that if we want to believe that it is true, we should rely on its unique first-order evidence. In contrast, intensional scientific realism is the view that all believable scientific theories have a common feature and that we should rely on it to determine whether a theory is believable or not. Fitzpatrick argues that extensional realism is immune, while intensional realism is not, to the pessimistic induction. I reply that if extensional realism overcomes the pessimistic induction at all, that is because it implicitly relies on the theoretical resource of intensional realism. I also argue that extensional realism, by nature, cannot embed a criterion for distinguishing between believable and unbelievable theories.  相似文献   

7.
Most scientific realists today in one way or another confine the object of their commitment to certain components of a successful theory and thereby seek to make realism compatible with the history of theory change. Kyle Stanford calls this move by realists the strategy of selective confirmation and raises a challenge against its contemporary, reliable applicability. In this paper, I critically examine Stanford's inductive argument that is based on past scientists' failures to identify the confirmed components of their contemporary theories. I argue that our ability to make such identification should be evaluated based on the performance of the scientific community as a whole rather than that of individual scientists and that Stanford's challenge fails to raise a serious concern because it focuses solely on individual scientists' judgments, which are either made before the scientific community has reached a consensus or about the value of the posit as a locus for further research rather than its confirmed status.  相似文献   

8.
I revisit an older defense of scientific realism, the methodological defense, a defense developed by both Popper and Feyerabend. The methodological defense of realism concerns the attitude of scientists, not philosophers of science. The methodological defense is as follows: a commitment to realism leads scientists to pursue the truth, which in turn is apt to put them in a better position to get at the truth. In contrast, anti-realists lack the tenacity required to develop a theory to its fullest. As a consequence, they are less likely to get at the truth.My aim is to show that the methodological defense is flawed. I argue that a commitment to realism does not always benefit science, and that there is reason to believe that a research community with both realists and anti-realists in it may be better suited to advancing science. A case study of the Copernican Revolution in astronomy supports this claim.  相似文献   

9.
In this paper, I introduce a new historical case study into the scientific realism debate. During the late-eighteenth century, the Scottish natural philosopher James Hutton made two important successful novel predictions. The first concerned granitic veins intruding from granite masses into strata. The second concerned what geologists now term “angular unconformities”: older sections of strata overlain by younger sections, the two resting at different angles, the former typically more inclined than the latter. These predictions, I argue, are potentially problematic for selective scientific realism in that constituents of Hutton's theory that would not be considered even approximately true today played various roles in generating them. The aim here is not to provide a full philosophical analysis but to introduce the case into the debate by detailing the history and showing why, at least prima facie, it presents a problem for selective realism. First, I explicate Hutton's theory. I then give an account of Hutton's predictions and their confirmations. Next, I explain why these predictions are relevant to the realism debate. Finally, I consider which constituents of Hutton's theory are, according to current beliefs, true (or approximately true), which are not (even approximately) true, and which were responsible for these successes.  相似文献   

10.
Perhaps the strongest argument for scientific realism, the no-miracles-argument, has been said to commit the so-called base rate fallacy. The apparent elusiveness of the base rate of true theories has even been said to undermine the rationality of the entire realism debate. On the basis of the Kuhnian picture of theory choice, I confront this challenge by arguing that a theory is likely to be true if it possesses multiple theoretical virtues and is embraced by numerous scientists–even when the base rate converges to zero.  相似文献   

11.
This paper reconsiders the challenge presented to scientific realism by the semantic incommensurability thesis. A twofold distinction is drawn between methodological and semantic incommensurability, and between semantic incommensurability due to variation of sense and due to discontinuity of reference. Only the latter presents a challenge to scientific realism. The realist may dispose of this challenge on the basis of a modified causal theory of reference, as argued in the author’s 1994 book, The incommensurability thesis. This referential response has been the subject of a charge of meta-incommensurability by Hoyningen-Huene et al. (1996), who argue that the realist’s referential response begs the question against anti-realist advocates of incommensurability. In reply, it is noted that a tu quoque rejoinder is available to the realist. It is also argued that the dialectical situation favours the scientific realist, since the anti-realist defence of incommensurability depends on an incoherent distinction between phenomenal world and world-in-itself. In light of such incoherence, and a strong commonsense presumption in favour of realism, the referential response to semantic incommensurability may be justifiably based on realism.  相似文献   

12.
Over the last two decades structural realism has been given progressively more elaborated formulations. Steven French has been at the forefront of the development of the most conceptually sophisticated and historically sensitive version of the view. In his book, The Structure of the World (French (2014)), French shows how structural realism, the view according to which structure is all there is (ontic structural realism), is able to illuminate central issues in the philosophy of science: underdetermination, scientific representation, dispositions, natural modality, and laws of nature. The discussion consistently sheds novel light on the problems under consideration while developing insightful and provocative views. In this paper, I focus on the status of mathematics within French's ontic structural realism, and I raise some concerns about its proper understanding vis-à-vis the realist components of the view.  相似文献   

13.
Scientific realism driven by inference to the best explanation (IBE) takes empirically confirmed objects to exist, independent, pace empiricism, of whether those objects are observable or not. This kind of realism, it has been claimed, does not need probabilistic reasoning to justify the claim that these objects exist. But I show that there are scientific contexts in which a non-probabilistic IBE-driven realism leads to a puzzle. Since IBE can be applied in scientific contexts in which empirical confirmation has not yet been reached, realists will in these contexts be committed to the existence of empirically unconfirmed objects. As a consequence of such commitments, because they lack probabilistic features, the possible empirical confirmation of those objects is epistemically redundant with respect to realism.  相似文献   

14.
S-dualities have been held to have radical implications for our metaphysics of fundamentality. In particular, it has been claimed that they make the fundamentality status of a physical object theory-relative in an important new way. But what physicists have had to say on the issue has not been clear or consistent, and in particular seems to be ambiguous between whether S-dualities demand an anti-realist interpretation of fundamentality talk or merely a revised realism. This paper is an attempt to bring some clarity to the matter. After showing that even antecedently familiar fundamentality claims are true only relative to a raft of metaphysical, physical, and mathematical assumptions, I argue that the relativity of fundamentality inherent in S-duality nevertheless represents something new, and that part of the reason for this is that it has both realist and anti-realist implications for fundamentality talk. I close by discussing the broader significance that S-dualities have for structuralist metaphysics and for fundamentality metaphysics more generally.  相似文献   

15.
After decades of neglect philosophers of physics have discovered gauge theories—arguably the paradigm of modern field physics—as a genuine topic for foundational and philosophical research. Incidentally, in the last couple of years interest from the philosophy of physics in structural realism—in the eyes of its proponents the best suited realist position towards modern physics—has also raised. This paper tries to connect both topics and aims to show that structural realism gains further credence from an ontological analysis of gauge theories—in particular U(1) gauge theory. In the first part of the paper the framework of fiber bundle gauge theories is briefly presented and the interpretation of local gauge symmetry will be examined. In the second part, an ontological underdetermination of gauge theories is carved out by considering the various kinds of non-locality involved in such typical effects as the Aharonov–Bohm effect. The analysis shows that the peculiar form of non-separability figuring in gauge theories is a variant of spatiotemporal holism and can be distinguished from quantum theoretic holism. In the last part of the paper the arguments for a gauge theoretic support of structural realism are laid out and discussed.  相似文献   

16.
J. D. Trout has recently developed a new defense of scientific realism, a new version of the No Miracles Argument. I critically evaluate Trout's novel defense of realism. I argue that Trout's argument for scientific realism and the related explanation for the success of science are self-defeating. In the process of arguing against the traditional realist strategies for explaining the success of science, he inadvertently undermines his own argument.  相似文献   

17.
‘Epistemic structural realism’ (ESR) insists that all that we know of the world is its structure, and that the ‘nature’ of the underlying elements remains hidden. With structure represented via Ramsey sentences, the question arises as to how ‘hidden natures’ might also be represented. If the Ramsey sentence describes a class of realisers for the relevant theory, one way of answering this question is through the notion of multiple realisability. We explore this answer in the context of the work of Carnap, Hintikka and Lewis. Both Carnap and Hintikka offer clear structuralist perspectives which, crucially, accommodate the openness inherent in theory change. Unfortunately there is little purchase for a viable form of realism in either case. Lewis’s approach, on the other hand, offers more scope for realism but, as we shall see, concerns arise as to whether a relevant form of structuralism can be maintained. In particular his thesis of Ramseyan humility undermines certain conceptions of scientific laws that the structural realist might naturally cleave to. Our overall conclusion is that the representational device of Ramsey sentence plus multiple realisability can accommodate either the structuralist or realist aspects of ESR but has difficulties capturing both.  相似文献   

18.
Recent philosophy has paid increasing attention to the nature of the relationship between the philosophy of science and metaphysics. In The Structure of the World: Metaphysics and Representation, Steven French offers many insights into this relationship (primarily) in the context of fundamental physics, and claims that a specific, structuralist conception of the ontology of the world exemplifies an optimal understanding of it. In this paper I contend that his messages regarding how best to think about the relationship are mixed, and in tension with one another. The tension is resolvable but at a cost: a weakening of the argument for French's structuralist ontology. I elaborate this claim in a specific case: his assertion of the superiority of a structuralist account of de re modality in terms of realism about laws and symmetries (conceived ontologically) over an account in terms of realism about dispositional properties. I suggest that these two accounts stem from different stances regarding how to theorize about scientific ontology, each of which is motivated by important aspects of physics.  相似文献   

19.
The goal of this paper, both historical and philosophical, is to launch a new case into the scientific realism debate: geocentric astronomy. Scientific realism about unobservables claims that the non-observational content of our successful/justified empirical theories is true, or approximately true. The argument that is currently considered the best in favor of scientific realism is the No Miracles Argument: the predictive success of a theory that makes (novel) observational predictions while making use of non-observational content would be inexplicable unless such non-observational content approximately corresponds to the world “out there”. Laudan's pessimistic meta-induction challenged this argument, and realists reacted by moving to a “selective” version of realism: the approximately true part of the theory is not its full non-observational content but only the part of it that is responsible for the novel, successful observational predictions. Selective scientific realism has been tested against some of the theories in Laudan's list, but the first member of this list, geocentric astronomy, has been traditionally ignored. Our goal here is to defend that Ptolemy's Geocentrism deserves attention and poses a prima facie strong case against selective realism, since it made several successful, novel predictions based on theoretical hypotheses that do not seem to be retained, not even approximately, by posterior theories. Here, though, we confine our work just to the detailed reconstruction of what we take to be the main novel, successful Ptolemaic predictions, leaving the full analysis and assessment of their significance for the realist thesis to future works.  相似文献   

20.
It might seem impossible to apply Ian Hacking's experimental argument for scientific realism to astrophysical objects; indeed Hacking himself expressed scepticism about extragalactic entities. Such astrophysical antirealism has been the subject of intense debate and is usually seen as an undesired consequence of experimental realism. In this paper, I claim that it is possible to recast the experimental argument by reference to James Woodward's non-anthropocentric account of experimentation so as to apply it to astrophysical entities, such as gravitational lenses. I also argue that this new formulation of the experimental argument solves several problems with Hacking's original version.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号