首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
Since the late 1980s, presentism has seen a resurgence among some historians of science. Most of them draw a line between a good form of presentism and typical anachronism, but where the line should be drawn remains an open question. The present article aims at resolving this problem. In the first part I define the four main distinct forms of presentism at work in the history of science and the different purposes they serve. Based on this typology, the second part reconsiders what counts as anachronism, Whiggism and positivist history. This clarification is used as a basis to rethink the research program of historical epistemology in the third section. Throughout this article, I examine the conceptual core of historical epistemology more than its actual history, from Bachelard to Foucault or others. Its project should be defined – as Canguilhem suggested – as an attempt to account for both the contingency and the rationality of science. As such, historical epistemology is based on a complex fifth form of presentism, which I call critical presentism. The critical relation at stake not only works from the present to the past, because of the acknowledged rationality of science, but also from the past to the present because of the contingency and historicity of scientific knowledge.  相似文献   

3.
4.
We all know that, nowadays, physics and philosophy are housed in separate departments on university campuses. They are distinct disciplines with their own journals and conferences, and in general they are practiced by different people, using different tools and methods. We also know that this was not always the case: up until the early 17th century (at least), physics was a part of philosophy. So what happened? And what philosophical lessons should we take away? We argue that the split took place long after Newton's Principia (rather than before, as many standard accounts would have it), and offer a new account of the philosophical reasons that drove the separation. We argue that one particular problem, dating back to Descartes and persisting long into the 18th century, played a pivotal role. The failure to solve it, despite repeated efforts, precipitates a profound change in the relationship between physics and philosophy. The culprit is the problem of collisions. Innocuous though it may seem, this problem becomes the bellwether of deeper issues concerning the nature and properties of bodies in general. The failure to successfully address the problem led to a reconceptualization of the goals and subject-matter of physics, a change in the relationship between physics and mechanics, and a shift in who had authority over the most fundamental issues in physics.  相似文献   

5.
Kant’s transcendental method, as applied to natural philosophy, considers the laws of physics as conditions of the possibility of experience. A more modest transcendental project is to show how the laws of motion explicate the concepts of motion, force, and causal interaction, as conditions of the possibility of an objective account of nature. This paper argues that such a project is central to the natural philosophy of Newton, and explains some central aspects of the development of his thinking as he wrote the Principia. One guiding scientific aim was the dynamical analysis of any system of interacting bodies, and in particular our solar system; the transcendental question was, what are the conceptual prerequisites for such an analysis? More specifically, what are the conditions for determining “true motions” within such a system—for posing the question of “the frame of the system of the world” as an empirical question? A study of the development of Newton’s approach to these questions reveals surprising connections with his developing conceptions of force, causality, and the relativity of motion. It also illuminates the comparison between his use of the transcendental method and that of Euler and Kant.  相似文献   

6.
We distinguish two orientations in Weyl's analysis of the fundamental role played by the notion of symmetry in physics, namely an orientation inspired by Klein's Erlangen program and a phenomenological-transcendental orientation. By privileging the former to the detriment of the latter, we sketch a group(oid)-theoretical program—that we call the Klein-Weyl program—for the interpretation of both gauge theories and quantum mechanics in a single conceptual framework. This program is based on Weyl's notion of a “structure-endowed entity” equipped with a “group of automorphisms”. First, we analyze what Weyl calls the “problem of relativity” in the frameworks provided by special relativity, general relativity, and Yang-Mills theories. We argue that both general relativity and Yang-Mills theories can be understood in terms of a localization of Klein's Erlangen program: while the latter describes the group-theoretical automorphisms of a single structure (such as homogenous geometries), local gauge symmetries and the corresponding gauge fields (Ehresmann connections) can be naturally understood in terms of the groupoid-theoretical isomorphisms in a family of identical structures. Second, we argue that quantum mechanics can be understood in terms of a linearization of Klein's Erlangen program. This stance leads us to an interpretation of the fact that quantum numbers are “indices characterizing representations of groups” ((Weyl, 1931a), p.xxi) in terms of a correspondence between the ontological categories of identity and determinateness.  相似文献   

7.
This paper examines competing interpretations of Pierre Duhem’s theory of good sense recently defended by David Stump and Milena Ivanova and defends a hybrid reading that accommodates the intuitions of both readings. At issue between Stump and Ivanova is whether Duhemian good sense is a virtue theoretic concept. I approach the issue from the broader perspective of determining the epistemic value of good sense per se, and argue for a mitigated virtue theoretic reading that identifies an essential role for good sense in theory choice. I also show that many important issues in both philosophy of science and ‘mainstream’ value driven epistemology are illuminated by the debate over the epistemic value of good sense. In particular, philosophical work on the nature of cognitive character, rule governed rationality and the prospects of epistemic value t-monism are illuminated by virtue theoretic readings of Duhemian good sense.  相似文献   

8.
This paper explores the relationship between Kant’s views on the metaphysical foundations of Newtonian mathematical physics and his more general transcendental philosophy articulated in the Critique of pure reason. I argue that the relationship between the two positions is very close indeed and, in particular, that taking this relationship seriously can shed new light on the structure of the transcendental deduction of the categories as expounded in the second edition of the Critique.  相似文献   

9.
This paper proposes a metaphysics for holographic duality. In addition to the AdS/CFT correspondence I also consider the dS/CFT conjecture of duality. Both involve non-perturbative string theory and both are exact dualities. But while the AdS/CFT keeps time at the margins of the story, the dS/CFT conjecture gives to time the “space” it deserves by presenting an interesting holographic model of it. My goals in this paper can be summarized in the following way. First, I argue that the formal structure and physical content of the duality do not support the standard philosophical reading of the relation in terms of grounding. Second, I put forward a philosophical scheme mainly extrapolated from the double aspect monism theory. I read holographic duality in this framework as it seems to fit the mathematical and physical structure of the duality smoothly. Inside this framework I propose a notion of spacetime emergence alternative to those ones commonly debated in the AdS/CFT physics and philosophy circles.  相似文献   

10.
I argue for an interpretation of the connection between Descartes’ early mathematics and metaphysics that centers on the standard of geometrical intelligibility that characterizes Descartes’ mathematical work during the period 1619 to 1637. This approach remains sensitive to the innovations of Descartes’ system of geometry and, I claim, sheds important light on the relationship between his landmark Geometry (1637) and his first metaphysics of nature, which is presented in Le monde (1633). In particular, I argue that the same standard of clear and distinct motions for construction that allows Descartes to distinguish ‘geometric’ from ‘imaginary’ curves in the domain of mathematics is adopted in Le monde as Descartes details God’s construction of nature. I also show how, on this interpretation, the metaphysics of Le monde can fruitfully be brought to bear on Descartes’ attempted solution to the Pappus problem, which he presents in Book I of the Geometry. My general goal is to show that attention to the standard of intelligibility Descartes invokes in these different areas of inquiry grants us a richer view of the connection between his early mathematics and philosophy than an approach that assumes a common method is what binds his work in these domains together.  相似文献   

11.
This paper is concerned with Friedman׳s recent revival of the notion of the relativized a priori. It is particularly concerned with addressing the question as to how Friedman׳s understanding of the constitutive function of the a priori has changed since his defence of the idea in his Dynamics of Reason. Friedman׳s understanding of the a priori remains influenced by Reichenbach׳s initial defence of the idea; I argue that this notion of the a priori does not naturally lend itself to describing the historical development of space-time physics. Friedman׳s analysis of the role of the rotating frame thought experiment in the development of general relativity – which he suggests made the mathematical possibility of four-dimensional space-time a genuine physical possibility – has a central role in his argument. I analyse this thought experiment and argue that it is better understood by following Cassirer and placing emphasis on regulative principles. Furthermore, I argue that Cassirer׳s Kantian framework enables us to capture Friedman׳s key insights into the nature of the constitutive a priori.  相似文献   

12.
In publications in 1914 and 1918, Einstein claimed that his new theory of gravity in some sense relativizes the rotation of a body with respect to the distant stars (a stripped-down version of Newton's rotating bucket experiment) and the acceleration of the traveler with respect to the stay-at-home in the twin paradox. What he showed was that phenomena seen as inertial effects in a space-time coordinate system in which the non-accelerating body is at rest can be seen as a combination of inertial and gravitational effects in a (suitably chosen) space-time coordinate system in which the accelerating body is at rest. Two different relativity principles play a role in these accounts: (a) the relativity of non-uniform motion, in the weak sense that the laws of physics are the same in the two space-time coordinate systems involved; (b) what Einstein in 1920 called the relativity of the gravitational field, the notion that there is a unified inertio-gravitational field that splits differently into inertial and gravitational components in different coordinate systems. I provide a detailed reconstruction of Einstein's rather sketchy accounts of the twins and the bucket and examine the role of these two relativity principles. I argue that we can hold on to (b) but that (a) is either false or trivial.  相似文献   

13.
Complementarity has frequently, but mistakenly, been conflated with wave-particle duality, and this conflation has led to pervasive misunderstandings of Bohr's views and several misguided claims of an experimental “disproof” of complementarity. In this paper, I explain what Bohr meant by complementarity, and how this is related to, but distinct from, wave-particle duality. I list a variety of possible meanings of wave-particle duality, and canvass the ways in which they are (or are not) supported by quantum physics and Bohr's interpretation. I also examine the extent to which wave-particle duality should be viewed as an example of the sort of dualities one finds in, e.g., string theory. I argue that the most fruitful way of reading of Bohr's account complementarity is by comparing it to current accounts of effective theories with limited domains of applicability.  相似文献   

14.
In this paper I concentrate on the dynamic aspects of the special theory of relativity (in the non-Minkowski formalism), and not on the kinematic part of the story as is usually done. Following up the dynamic story leads to a new point of view as to Poincaré's important role in the development of special relativity. Much of Poincaré's dynamic work did not enter into Einstein's 1905 theory, since Einstein was mainly occupied with kinematics. However, the dynamic part is most fundamental in the development of the special theory of relativity after 1905. In this paper I consider the main developments of relativistic dynamics in which I demonstrate that much response to Poincaré's dynamic research can be found. I argue that Poincaré's dynamic work assisted in departing from Einstein's electrodynamic theory towards relativistic dynamics (independent of electrodynamics).  相似文献   

15.
This paper compares Feyerabend's arguments in Science in a Free Society to the controversial theory of expertise proposed by Harry Collins and Robert Evans as a Third Wave of Science Studies. Is the legitimacy of democratic decisions threatened by the unquestioned authority of scientific advice? Or does, on the contrary, science need protection from too much democratic participation in technical decisions? Where Feyerabend's political relativism envisions democratic society as inherently pluralist and demands equal contribution of all traditions and worldviews to public decision-making, Collins and Evans hold a conception of elective modernism, defending the reality and value of technical expertise and arguing that science deserves a privileged status in modern democracies, because scientific values are also democratic values. I will argue that Feyerabend's political relativism provides a valuable framework for the evaluation of Collins' and Evans' theory of expertise. By constructing a dialog between Feyerabend and this more recent approach in Science and Technology Studies, the aim of this article is not only to show where the two positions differ and in what way they might be reconciled, but also how Feyerabend's philosophy provides substantial input to contemporary debate.  相似文献   

16.
This paper aims to show that the development of Feyerabend's philosophical ideas in the 1950s and 1960s largely took place in the context of debates on quantum mechanics.In particular, he developed his influential arguments for pluralism in science in discussions with the quantum physicist David Bohm, who had developed an alternative approach to quantum physics which (in Feyerabend's perception) was met with a dogmatic dismissal by some of the leading quantum physicists. I argue that Feyerabend's arguments for theoretical pluralism and for challenging established theories were connected to his objections to the dogmatism and conservatism he observed in quantum physics.However, as Feyerabend gained insight into the physical details and historical complexities which led to the development of quantum mechanics, he gradually became more modest in his criticisms. His writings on quantum mechanics especially engaged with Niels Bohr; initially, he was critical of Bohr's work in quantum mechanics, but in the late 1960s, he completely withdrew his criticism and even praised Bohr as a model scientist. He became convinced that however puzzling quantum mechanics seemed, it was methodologically unobjectionable – and this was crucial for his move towards ‘anarchism’ in philosophy of science.  相似文献   

17.
Although several of Descartes's disciples established occasionalism as the natural outcome of Cartesianism, Pierre-Sylvain Régis forcefully resisted this conclusion by developing an account of secondary causes in which God does not immediately intervene in the natural world. In order to understand this view, it has been argued that Régis melds Aquinas's concurrentism with the new, mechanist natural philosophy defended in Cartesian physics. In this paper, I contend that such a reading of Régis's position is misleading for our understanding of both his account of secondary causality and the relationship between medieval debates and seventeenth century natural philosophy. I show that Régis's account of secondary causality denies two fundamental features at the core of the account proposed by Aquinas, namely that God acts immediately in nature and that secondary causes are per se causes. I contend that Régis's view more closely resembles a specific account of artificial instrumental causality developed by Duns Scotus. The comparison with Scotus shows that Régis is still dealing with conceptual tools that can be traced back to the scholastic tradition. Yet, Régis implements these tools to establish an account of causation that is fundamentally irreconcilable with scholastic natural philosophy.  相似文献   

18.
In this paper I argue that Newton’s stance on explanation in physics was enabled by his overall methodology and that it neither committed him to embrace action at a distance nor to set aside philosophical and metaphysical questions. Rather his methodology allowed him to embrace a non-causal, yet non-inferior, kind of explanation. I suggest that Newton holds that the theory developed in the Principia provides a genuine explanation, namely a law-based one, but that we also lack something explanatory, namely a causal account of the explanandum. Finally, I argue that examining what it takes to have law-based explanation in the face of agnosticism about the causal process makes it possible to recast the debate over action at a distance between Leibniz and Newton as empirically and methodologically motivated on both sides.  相似文献   

19.
Special relativity is preferable to those parts of Lorentz's classical ether theory it replaced because it shows that various phenomena that were given a dynamical explanation in Lorentz's theory are actually kinematical. In his book, Physical Relativity, Harvey Brown challenges this orthodox view. I defend it. The phenomena usually discussed in this context in the philosophical literature are length contraction and time dilation. I consider three other phenomena in the same class, each of which played a role in the early reception of special relativity in the physics literature: the Fresnel drag effect, the velocity dependence of electron mass, and the torques on a moving capacitor in the Trouton–Noble experiment. I offer historical sketches of how Lorentz's dynamical explanations of these phenomena came to be replaced by their now standard kinematical explanations. I then take up the philosophical challenge posed by the work of Harvey Brown and Oliver Pooley and clarify how those kinematical explanations work. In the process, I draw attention to the broader importance of the kinematics–dynamics distinction.  相似文献   

20.
Objections to the use of historical case studies for philosophical ends fall into two categories. Methodological objections claim that historical accounts and their uses by philosophers are subject to various biases. We argue that these challenges are not special; they also apply to other epistemic practices. Metaphysical objections, on the other hand, claim that historical case studies are intrinsically unsuited to serve as evidence for philosophical claims, even when carefully constructed and used, and so constitute a distinct class of challenge. We show that attention to what makes for a canonical case can address these problems. A case study is canonical with respect to a particular philosophical aim when the features relevant to that aim provide a reasonably complete causal account of the results of the historical process under investigation. We show how to establish canonicity by evaluating relevant contingencies using two prominent examples from the history of science: Eddington’s confirmation of Einstein’s theory of general relativity using his data from the 1919 eclipse and Watson and Crick’s determination of the structure of DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号