首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
正2月8日晚,首款国产量子计算机操作系统——"本源司南"在合肥市正式发布。该系统由合肥本源量子计算科技有限责任公司自主研发,实现了量子资源系统化管理、量子计算任务并行化执行、量子芯片自动化校准等全新功能,助力量子计算机高效稳定运行,标志着国产量子软件研发能力已达国际先进水平。相比于经典计算机,量子计算机最突出的优势在于强大的计算能力,但目前全球范围内可供使用的量子计算机只有50台左右,如果不能做到有效利用,就会出现算力浪费情况。  相似文献   

2.
《安徽科技》2021,(7):54-55
四月 2日 本源量子与晶合集成共建量子计算芯片联合实验室.合肥本源量子计算科技有限责任公司和合肥晶合集成电路股份有限公司共建量子计算芯片联合实验室签约仪式在合肥举行.本源量子、晶合集成分别是量子计算、驱动芯片代工领域的龙头企业,双方合作是充分发挥量子计算和晶圆制造技术优势、共建创新联合体的一次探索,为新一代信息技术产业生态构建提供了新路径.双方共建安徽省首个量子计算芯片领域联合实验室,将在极低温集成电路领域进行工艺合作开发以及工程流片验证,实现从芯片设计到封装测试全链条开发.联合实验室建设,将对量子计算芯片集成化发展、填补国内制造空白、加快应用落地起到重要推动作用.  相似文献   

3.
《科学世界》2010,(11):7-7
英国布里斯托尔大学等机构的研究人员在近期美国《科学》杂志上报告了量子计算机研究领域的新进展。领导研究的杰里米·奥布赖恩教授认为,这一进展可能使量子计算机面世的时间提前到10年之内。这个研究小组由英国、日本、以色列和荷兰等多国研究人员组成。他们成功研发出一种可用于量子计算的硅芯片,  相似文献   

4.
中国科学技术大学潘建伟研究团队与中科院上海微系统所、国家并行计算机工程技术研究中心合作,成功研制出量子计算原型机"九章",其处理特定问题的速度比目前最快的超级计算机快100万亿倍.这一成果使我国成功实现了量子计算研究的第一个里程碑——量子计算优越性,相关论文12月4日在《科学》杂志在线发表.  相似文献   

5.
量子算法成功的标志体现为实现了正确的量子状态转换,这一过程主要通过适当的量子算符来实现。然而,事实证明寻找合适的量子算符是非常困难的。之前大多数研究主要采用机器学习的方法解决这一问题,这些算法与以酉量子操作为特征的量子电路模型有较大差距,也难以分析其在量子计算机上的实现。提出利用绝热量子演化实现量子状态的转换,与标准量子计算模型相比,量子状态的转换更加直接,也不用考虑算符的酉性,因此是在量子计算及量子通信中值得借鉴的量子状态转化方法。  相似文献   

6.
为了实现量子与非门和量子或非门,从而完善量子计算中的量子逻辑功能,提出二人零和单硬币量子博弈模型的理论方案,利用对量子硬币的不同量子操控从而分别实现量子与非和量子或非逻辑功能.研究结果表明,当两输入端信息相同时,可将量子与非门或者量子或非门视作两个独立的量子硬币,且实现这两种量子逻辑功能的量子操作相同;若两输入端信息不...  相似文献   

7.
首先, 用光的量子波动理论给出一维光子晶体的量子传输矩阵、 量子色散关系、 量子透射率和反射率; 其次, 通过数值计算分别给出一维光子晶体的量子色散关系、 量子透射率和反射率曲线, 并与经典的色散关系、 透射率和反射率进行比较. 结果表明, 其计算结果一致. 该方法可用于进一步研究光子晶体的量子Zak相、 量子陈数和量子边缘态等量子拓扑性质.  相似文献   

8.
首先, 用光的量子波动理论给出一维光子晶体的量子传输矩阵、 量子色散关系、 量子透射率和反射率; 其次, 通过数值计算分别给出一维光子晶体的量子色散关系、 量子透射率和反射率曲线, 并与经典的色散关系、 透射率和反射率进行比较. 结果表明, 其计算结果一致. 该方法可用于进一步研究光子晶体的量子Zak相、 量子陈数和量子边缘态等量子拓扑性质.  相似文献   

9.
量子计算是一种依照量子力学理论进行的新型计算.它速度惊人,30秒就能解决普通电脑100亿年才能解决的问题.目前,美国政府和各信息巨头都在紧锣密鼓地进行量子计算研发,并已有新的突破.  相似文献   

10.
基于测量的单向量子计算是重要的通用量子计算模型,可以模拟一般量子计算任务。单向量子计算基于量子簇态作为计算资源,利用每个量子位的局部量子测量和经典通信执行一般量子计算。单向量子计算是与量子线路模型等价的量子计算模型。近年来,研究者们对单向量子计算的量子资源、纠缠度量、局部操作简化,以及量子通信等给出一系列研究成果,并基于光学平台开展了一些量子模拟实验。量子簇态与单向量子计算为一般量子计算提供非常好的量子任务处理方式,受到研究者们的广泛关注。该文主要总结基于测量的单向量子计算模型,包括重要的量子资源态、局部信息处理方式,以及与单向量子计算相关的研究;该文对单向量子计算存在的问题和前沿研究方法进行展望,为研究者提供借鉴。  相似文献   

11.
量子神经计算技术   总被引:1,自引:0,他引:1  
通过对量子计算与神经计算的对比分析,提出量子神经计算这一全新的计算技术.简要论述了量子Hebb学习规则、基于量子双缝干涉的神经网络模型以及量子Hamming竞争学习算法,揭示了量子神经计算的一些本质特征.  相似文献   

12.
本文简要地综述了用量子色动力学微扰论研究P—P碰撞大横动量光子直生过程的历史和现状。文中叙述了这个过程的物理图象,应用量子色动力学微扰论进行计算的基本方法和一些主要结果,并与现有的实验数据作了比较。这方面工作的成绩也说明了量子色动力学是当前较好的和最有希望成功的强相互作用动力学理论。  相似文献   

13.
固态量子存储器可有效减少信道损耗、拓展量子网络工作距离,是构建大尺度量子网络的关键核心器件.近日,中国科学技术大学李传锋、周宗权研究组在国际上首次成功研制出按需式读取的可集成固态量子存储器,研究成果发表于《物理评论快报》.  相似文献   

14.
全世界量子电脑的发展已逐渐进入可商业应用的阶段,量子电脑延伸了半导体产业已经走到尽头的摩尔定律,引发新的量子摩尔定律,并且以更快的速度实现数字计算能力,这将对人类智能与科技带来极大冲击与推动。近几年来,人工智能已对人类社会产生巨大影响,量子计算与人工智能如何结合成量子人工智能?如何结合才会产生最大效应?量子计算机的量子计算与人工智能结合的影响,可能远远超出人们的想象。比如有了巨大演算能力的人工智能机器人会不会自行发明更厉害的量子计算机与量子算法,而这个更厉害的量子计算机与量子演算又使机器人再往前智能升级,如此不断循环。很多人忧虑在量子人工智能快速发展后,可能取代人类,人类如何因应?该文针对这些疑问作一阐述,提出一些见解,作为对未来展望的注脚。  相似文献   

15.
“非常重要的原理性实验,一个艰苦卓绝的英雄主义的量子光学实验”——获得《自然》杂志审稿人如此好评的,是该杂志在量子信息领域首篇以中国为第一单位发表的论文。该论文在世界上首次成功实现了拓扑量子纠错,取得可扩展容错性量子计算领域的重大突破,为将来实现真正的量子计算打下了坚实基础。  相似文献   

16.
实现量子控制和量子计算首先需要测定相关量子系统的哈密顿量参数信息.然而很多情况下,量子系统是不完全可测的.这里使用核磁共振量子模拟器模拟了一个三自旋的XY链模型的含时演化,通过对其中一个核自旋共振信号的读出与数据处理,成功地精确测出了该XY链的各项耦合参数信息.  相似文献   

17.
计算Werner态对Bell不等式的最大违背及其用互信息和相对熵度量的关联。计算结果表明:对Werner态使Bell不等式有最大违背的测量恰能从其中提取最多信息;在关联的两种度量方法下,quantum discord描述的量子关联均大于经典关联,而纠缠描述的量子关联甚至在Bell不等式有最大违背的情况下也不一定大于经典关联。这说明quantum discord比量子纠缠能更好地描述关联的非定域性,从而使其在量子通信和量子计算中有更广泛的应用。  相似文献   

18.
研究存在电磁共振模式耦合时约瑟夫森结中的宏观量子效应。取典型特例,小型结与超导传输线耦合作具体研究。导出了该体系完整的拉格朗日量和欧几里德作用量。这可用于进一步计算宏观量子隧穿几率。具体讨论了如何利用该体系的特点进行更有效的宏观量子测量。  相似文献   

19.
《安徽科技》2008,(11):54-56
近40年来,郭光灿院士紧紧围绕国家信息安全等重大科技需求,在光学与量子信息等领域突破其实际应用的关键性技术难题,取得了一系列具有国际领先水平的原创性科技成果,并成功实现转化,使中国科技大学成为我国量子信息领域最重要的研发基地,在国际上具有较高知名度。  相似文献   

20.
量子公钥体制包括无条件安全的量子公钥和计算安全的量子公钥密码。以经典公钥算法为基础,结合量子密码特性,研究一种基于量子计算安全的公钥密码;在GF(4)域,量子低密度奇偶校码是一线性码,存在BP快速译码算法。由此提出基于量子准循环LDPC码的量子McEliece公钥体制,给出该公钥体制的加密和解密过程。并通过数值仿真方法,分析该体制的安全性。研究结果表明,与经典方法相比,基于准循环量子LDPC码的McEliece公钥体制极大地扩展了密钥空间,有效地提高了系统的安全性,相对于经典McEliece的工作因子(274),量子McE-liece的工作因子达到2270,传输效率为0.60,且可有效地抵抗量子Grover算法攻击。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号