首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对某工厂醋酸乙烯精制工艺TQ-203塔存在处理量不能满足生产要求、能耗较高的问题,运用流程模拟软件Aspen Plus对TQ-203塔进行模拟,选取最接近生产实际的NRTL模型,确定了理论板数为31块。由单因素分析给出了较优的参数范围,利用正交实验方法得到的最佳参数组合为:进料位置为第5块理论板,回流比为2.30,侧线采出位置为第29块理论板。根据上述结果提出对TQ-203塔更换塔板、调整进料及侧线采出位置的改进措施,能够满足该塔对处理量及产品纯度的生产要求;提出了侧线采出预热进料和采用第五精馏塔侧线采出做本塔塔釜热源的节能措施,该措施能节省水蒸汽(0.4MPa)12.56t/h、循环冷却水434.54t/h,可取得经济效益1495万元/a。  相似文献   

2.
利用Aspen plus对苯/甲苯/邻二甲苯体系的直接分离序列和间接分离序列两种方案进行模拟分析,确定了最佳工艺条件;然后,对两种方案的能耗和固定成本进行比较,结果表明前者较后者固定成本节约7.62%,能耗成本节约9%,年度总成本节约8.87%;最后分别用斜率判据、温度增益判据和恒温板判据三种方法确定精馏塔的灵敏度板位置并建立了精馏系统的控制结构,通过动态模拟得出系统面临进料流量和进料组成扰动时,控制不同灵敏度板的流量、再沸器热负荷、塔板温度和产品纯度的过渡分析曲线,从而得出最佳温度控制板位置。  相似文献   

3.
以二甲基亚砜(DMSO)作为萃取剂,选用UNIQUAC热力学模型对丙烯醛精馏脱水工艺进行模拟研究与优化。利用Aspen plusV9.0流程模拟软件进行模拟计算,基于全年总费用(TAC)最低原则,采用迭代优化法分别对萃取精馏塔(T-101)、溶剂回收塔(T-102)的理论板数(NT)、进料位置(NF)、回流比(R)等参数进行了优化,最终模拟结果为:萃取精馏塔总理论塔板数30,进料位置第25块理论板,回流比0.249,萃取剂进料位置第4块理论板,溶剂比0.183;溶剂回收塔的理论塔板数22,回流比0.232,进料位置第11块理论板;通过优化得到TAC最低为340万元/a。本文的模拟结果可以为丙烯醛脱水工艺的设计提供理论参考。  相似文献   

4.
针对某聚氯乙烯厂精馏过程中氯乙烯产品纯度低、能耗高的问题,利用化工流程模拟软件Aspen Plus对氯乙烯精馏系统中的T-203塔进行模拟优化,选择适合氯乙烯体系的NRTL模型进行计算,确定理论板数为28块。根据灵敏度分析和正交试验得到最佳操作参数为:回流比为0.8,进料位置为第2块理论板,侧线采出位置为第18块理论板。产品中氯乙烯质量分数达到99.999%,低沸物质量分数小于1×10-6,高沸物质量分数小于5×10-6。同时对精馏系统提出两项节能降耗技术,其中循环水改造技术预计为企业带来经济效益1034.85万元/a,高效导向筛板技术可以有效提高分离效率和生产能力。  相似文献   

5.
隔壁精馏塔可以用于分离三组分混合物,本文将其运用至氯乙烯高沸物的回收分离中。通过对氯乙烯高沸物进行Aspen模拟计算,优化隔壁精馏塔的压力、进料板位置、侧线采出位置、回流比以及分气比、分液比等操作参数,得出最优操作参数为:压力0.7 MPa,进料位置第7块塔板,侧线采出位置第10块塔板,回流比35,分液比0.239,分气比0.342。在上述参数下,隔壁塔有效地改善了产品的分离效果,并对高沸物中的氯乙烯、二氯乙烷以及三氯乙烷进行回收,以达到节能减排的目的。最后,将隔壁精馏塔与常规双塔流程进行比较,在相同产品分离要求的情况下,隔壁精馏塔全年总费用节省20.2%,节能效果明显。  相似文献   

6.
采用AspenPlus流程模拟软件,以1,3–丁二醇为溶剂,通过对三元剩余曲线特征的分析,建立双塔萃取精馏醋酸异丁酯精制工艺流程.考察理论板数、溶剂进料位置、原料进料位置、溶剂比和回流比对分离效果的影响.模拟结果表明:在满足产品醋酸异丁酯纯度达到99.9%,以上的条件下,优化工艺条件为萃取精馏塔理论板数50块、溶剂进料位置第8块板、原进料位置第36块板、溶剂比2.4、回流比2.6;溶剂回收塔理论板数10块、进料位置为第5块板、回流比0.7.在此工艺条件下,产品醋酸异丁酯纯度达到0.999,5(质量分数),回收率99.95%,单位产品热负荷32.509,GJ/t.  相似文献   

7.
利用Aspen Plus模拟软件对BTX直接序列双塔精馏过程进行稳态研究,在设计规定下分别对苯塔和甲苯塔的操作参数进行确定和优化,确定了各塔的理论塔板数、最佳进料位置、回流比以及灵敏板温度.在稳态模拟设计数据的基础上,采用Aspen Dynamics考察了进料流量扰动(±10%)和进料组成扰动(±10%)的工况下,各项控制指标均可在较短响应时间内达到平衡,动态控制结构可以很好地应对工艺过程中进料流量和进料组分的扰动.  相似文献   

8.
使用Aspen Plus11.1模拟甲醇与异丁烯反应精馏制备丙酸乙酯的过程研究,对进料温度、进料位置、回流比进行了灵敏度分析,得到了最佳工艺参数为:最佳进料温度是70℃;最佳进料醇烯摩尔比是3:2;最佳进料位置是第10块塔板;最佳回流比是1.0.模拟得到了反应精馏塔的温度和浓度分布,为更好地指导丙酸乙酯的工业生产提供参考.  相似文献   

9.
应用ECSS化工之星模拟软件对甲醇精馏过程中的常压精馏塔进行模拟。分别讨论了进料位置、操作回流比和侧线采出位置等参数对塔釜废水中甲醇含量、能耗和塔顶精甲醇纯度的影响,同时提出了常压精馏塔优化操作的方案,模拟计算结果符合工业实际过程。  相似文献   

10.
以环氧乙烷和正丁醇合成乙二醇单丁醚为例,开展了均相和非均相两种催化精馏工艺的稳态模拟、动态行为和控制研究,比较分析了两种工艺的特点。在Aspen Plus模拟平台上取得精馏塔稳态模拟数据,采用相对增益矩阵(RGA)对均相和非均相催化精馏塔进行分析,确定了双温度控制回路。在Aspen Dynamics中建立了控制方案,在添加正丁醇进料摩尔分数±10%的阶跃扰动下,考察了催化精馏塔的动态响应及控制效果。研究结果表明,均相和非均相催化精馏工艺均能达到控制要求,但非均相反应体系控制方案有更快的动态响应、更小的扰动变化量,并能更早恢复到设定值,其原因在于非均相工艺不存在催化剂浓度变化因素。  相似文献   

11.
在丙酸甲酯和正丙醇酯交换法生产丙酸丙酯的过程中,反应精馏塔的塔顶会产生大量的丙酸甲酯和甲醇共沸物,可通过分离的手段使其中的丙酸甲酯循环使用。提出耦合变压精馏工艺,选用非随机(局部)双液体模型方程(NRTL)热力学模型,利用Aspen Plus V10.0对工艺流程进行模拟研究。以塔釜产品纯度为约束变量,高压塔塔釜能耗最低为优化目标,分别对理论板数、进料位置、回流比等参数进行优化,优化后的两塔最优工艺参数如下:常压塔理论板数31,回流比2.5,进料位置第9块塔板,循环物料进料位置第14块塔板;高压塔操作压力500 kPa,理论板数21,进料位置第13块塔板,回流比3.3。分离效果可达到甲醇质量分数99.95%,丙酸甲酯质量分数99.94%。与传统变压精馏相比,本文的耦合变压精馏可节省能耗48.8%。  相似文献   

12.
采用Aspen Plus软件对年产60万t的对二甲苯项目中的苯、甲苯和混合二甲苯物系在分隔壁精馏塔中的分离进行模拟计算,通过对分隔壁精馏塔进料板的位置、回流比、侧线采出位置等参数的优化,以求达到经济效益最好、节能效果最佳为目的。将优化后的分隔壁精馏塔与传统的普通双塔精馏在分离效果、能耗方面进行比较,结果表明分隔壁精馏塔分离效果较好、能耗较低,热负荷比常规精馏塔降低了24.05%。  相似文献   

13.
利用化工模拟软件Aspen Plus 7.3对萃取精馏分离醋酸乙烯-甲醇共沸物流程进行模拟和优化,对塔板数、回流比、进料位置、萃取剂流率和温度等操作参数进行灵敏度分析。模拟优化得到萃取精馏塔的设计参数为:塔板数31,回流比0.27,萃取剂进料位置第2块塔板,萃取剂流率21932kg/h,混合物进料位置第22块塔板,塔顶采出量18477kg/h。溶剂回收塔的设计参数为:塔板数24,回流比1.80,进料位置第19块塔板,塔顶采出量12626kg/h。在此基础上,对优化前后能耗进行对比,节省循环水、蒸汽和萃取剂用量分别为285。9万t/a、3.2万t/a和4.4万t/a,每年共带来经济效  相似文献   

14.
首先运用Aspen Plus软件对醋酸乙烯精馏四塔进行稳态优化,优化后的操作条件为进料板位置31块板、回流比7.22、塔顶馏出量1007 kg/h。根据实际生产经验及Shinskey精馏控制三项准则,提出了单板温度控制方案(CS1)与双板温度控制方案(CS2)。动态模拟研究结果表明CS1可以保证精馏塔的稳定操作,CS2在产品质量控制上更胜一筹,但两者均不能克服进料组分的扰动。因此本文提出了一种新的控制结构:组分-温度控制结构(CS3),动态模拟结果显示,添加进料组分扰动后,塔顶产品浓度仍可满足质量要求。  相似文献   

15.
异丁醇与环己烷是二元共沸物系,经过萃取剂的筛选,采用以苯胺为萃取剂的萃取精馏工艺分离异丁醇与环己烷,基于全年总费用(TAC)最小的原则,利用Aspen plus对工艺流程进行模拟与优化,得到优化后的工艺参数:萃取精馏塔理论板数38块,进料位置第31块板,萃取剂用量39 kmol/h,萃取剂进料位置第9块板,回流比0.517;溶剂回收塔理论板数20块,进料位置第13块板,回流比0.246。结果表明,全年总费用比变压精馏更经济,TAC降低了31.15%。本方法可为异丁醇与环己烷的工业分离提供理论依据。  相似文献   

16.
选择水、氯苯作为正、反向萃取剂来分离丙酮-甲醇共沸物系,规定原料液进料流率为540 kmol/h,进料温度为320 K,各塔的操作压力均为101.325 kPa,通过Aspen Plus进行流程模拟,得到摩尔分数为99.5%的产品。以最小全年总费用(TAC)为目标、序贯迭代搜索法为优化方法对不同萃取剂下的各塔进行灵敏度分析,规定塔顶轻组分摩尔分数为99.5%、摩尔回收率为99.99%,得到的优化结果显示:正向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为76块、64块和45块,萃取剂回收塔的理论塔板数、进料位置分别为25块、14块;反向萃取中萃取精馏塔的理论塔板数、原料进料位置和萃取剂进料位置分别为52块、40块和24块,萃取剂回收塔的理论塔板数、进料位置分别为25块、7块。通过TAC计算表算出两种萃取剂下工艺流程所需的经济费用,结果为正向萃取流程费用26 658 942.69元/a,反向萃取流程费用25 466 172.02元/a。  相似文献   

17.
利用Aspen Plus流程模拟软件对煤制乙二醇副产物杂醇油回收工艺进行模拟研究,选用非随机双液体(NRTL)热力学方法对煤制乙二醇副产物杂醇油回收工艺进行了模拟计算,应用灵敏度分析工具分别对甲醇回收塔(T-101)、萃取精馏塔(T-102)、乙二醇回收塔(T-103)的理论板数、进料位置、回流比等参数进行了优化,优化后的参数为:甲醇回收塔塔板数50,回流比3.6,进料位置第20块塔板;萃取精馏塔的塔板数25,回流比2.3,进料位置第14块塔板;乙二醇回收塔的塔板数9,回流比0.24,进料位置第7块塔板。经济效益分析表明,年处理2.4万t杂醇油可为企业带来每年约894.87万元的收益,显著提高企业的市场竞争力。  相似文献   

18.
为降低精馏塔冷热公用工程总费用,该文采用分馏塔的总组合曲线(column grand composite curve,CGCC)对精馏塔进料位置与进料状态进行同步优化。基于实际接近最小热力学状态(practical near-minimum thermodynamic condition,PNMTC)的CGCC可由2条理论曲线即全塔精馏线与全塔提馏线构成,2条曲线的交点O既为精馏塔的理论最优进料点,又为进料预热的分割点。以精馏塔冷热公用工程费用节省量为目标可先确定交点O的位置,再结合焓差值ΔHn,def,可定量确定精馏塔的最优进料位置,最终达到同步优化进料位置与进料状态的目的。该文以苯-甲苯塔为例,其冷热公用工程费用最大节省量为1.24RMB/h,对应的最优预热量为1.98MW,焓差值ΔHn,def为0.038MW,对应的最优进料位置为第21块塔板。基于CGCC方法计算的最优进料位置和进料状态与Aspen Plus模拟软件结果相同,误差仅为1%~3%,表明此方法准确可行。  相似文献   

19.
基于NRTL模型,以乙二醇为萃取剂,用Aspen Plus软件对二氯甲烷-乙醇-水三元体系间歇萃取精馏过程进行模拟,分别考虑了溶剂比、回流比、塔板数、溶剂进料位置和溶剂进料温度对整个精馏过程的影响.原料为100 kg含95%二氯甲烷(质量分数)、3%水、2%乙醇的混合溶液,利用模拟结果对各工艺参数进行分析和优化,得出了最佳的操作条件:精馏塔塔板数为20块、溶剂进料位置在第2块塔板、溶剂进料温度为38℃、回流比为2.5、溶剂比为0.575.在该操作条件下,塔顶的二氯甲烷的质量分数可达99.8%以上,回收率为96.65%,满足溶剂回收再利用的要求.通过实验对该模拟结果进行验证,得到的二氯甲烷质量分数高达99.8%,回收率为90%左右,与模拟结果基本一致.  相似文献   

20.
针对隔壁精馏塔节能工艺,提供了一套完整的设计优化方法.首先基于Fenske-Underwood-GillilandKirkbride方程建立了完整的简捷设计方法,得到了隔壁精馏塔塔实际理论板数、适宜的进料位置、侧线采出位置及回流比等参数.然后在简捷计算的基础之上,选用Multifrac模型对隔壁塔进行了严格计算模拟,同时利用Aspen Plus进行单因素优化分析得到最优设计参数.最后利用响应面优化法(RSM)中的箱线图设计(BBD)方法对隔壁精馏塔设计参数进行了实验设计,在验证模型有效的基础上运用Design-Expert软件进行数据处理,预测出了最优设计参数,并将预测值进行实验验证,将验证结果与单因素优化结果进行对比,结果表明响应面优化法得到的最优设计参数使隔壁塔的能耗较低、纯度较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号