首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
采用一锅法制备聚吡咯/Fe_3O_4(PPy/Fe_3O_4)复合材料,研究不同聚合度的PVA对球形PPy/Fe_3O_4复合材料微观形貌及其吸波性能的影响规律.用透射电镜(TEM),X射线衍射仪(XRD),傅立叶-红外光谱仪(FT-IR)和矢量网络分析仪(VNA)等分析测试手段对制备的复合材料进行微观结构表征和性能研究.结果表明:当PVA聚合度为1 750时,PPy/Fe_3O_4复合材料呈规整球状,Fe_3O_4纳米粒子均匀负载在PPy表面;复合材料在6.5GHz、3.5mm厚度处反射损耗为-36dB,频宽为1.8GHz.  相似文献   

2.
采用一锅法制备SiO_2/PANI/Fe_3O_4三元复合材料,研究不同物质的量浓度对甲苯磺酸掺杂对复合材料吸波性能的影响规律.用透射电镜(TEM),扫描电镜(SEM),X射线衍射仪(XRD),傅立叶-红外光谱仪(FT-IR)和矢量网络分析仪(VNA)等分析测试手段对制备的复合材料进行微观结构表征以及电磁参数、吸波性能分析.结果表明:当对甲苯磺酸物质的量浓度为0.05 mol/L时SiO_2/PANI/Fe_3O_4三元复合材料达到最优阻抗匹配条件,复合材料在厚度为5.0 mm、频率为5.62 GHz处反射损耗(RL)为-21.4 dB,有效频宽为2.2 GHz.  相似文献   

3.
利用简单的低温聚合方法合成了聚吡咯纳米线/石墨烯(PPy/G)纳米复合材料,它们可以作为轻质的电磁波吸收剂.扫描电镜图表明,PPy纳米线的长度为数微米,与石墨烯之间存在较好的接触界面.该复合材料在厚度2.0–5.0?mm范围内,所有的最小反射损耗值均低于–20.0dB.例如,当复合材料的厚度为3.0?mm、频率为11.28GHz时,最小的反射损耗为–38.9dB;当厚度为3.5?mm、频率为9.36GHz时,最小的反射损耗为–39.1dB,远优于PPy纳米线和之前报道的石墨烯复合材料.此外,PPy/G纳米复合材料在基质中的添加量仅为5wt%,低于之前报道的石墨烯复合纳米材料.这种增强的电磁波吸收特性可以由复合材料间的界面极化以及1/4波长匹配模型来解释.本文的研究结果可以为轻质电磁波吸收材料的实际应用提供参考.  相似文献   

4.
利用机械搅拌物理混合、热解法成功制备了Fe_3O_4/ZnO复合材料,将Fe_3O_4粒子与一定量的Zn(CH_3COO)_2·2H_2O在无水乙醇中充分混合,并将混合物在氩气氛围下进行500℃热处理使其Zn(Ac)_2·2H_2O分解,从而得到Fe_3O_4/ZnO复合材料。采用SEM、XRD、XPS对样品形貌、结构及表面进行分析,通过矢量网络分析仪研究了不同量的Zn(CH_3COO)_2·2H_2O对样品吸波性能的影响。结果表明,当Fe_3O_4与Zn(CH_3COO)_2·2H_2O的质量比为1∶2时,Fe_3O_4/ZnO复合材料的吸波性能远优于纯相Fe_3O_4。当频率为11 GHz,涂层厚度为3 mm时,最佳反射率达-14.4 dB。  相似文献   

5.
采用水热合成工艺制备了NiFe_2O_4纳米颗粒材料与NiFe_2O_4/TiO_2纳米复合材料,利用X射线衍射仪(XRD)、扫描电子显微镜(SEM)对样品的微观结构与形貌进行了测试与表征,利用振动样品磁强计(VSM)对样品的磁学性能进行了测试与分析,并研究了NiFe_2O_4/TiO_2纳米复合材料对罗丹明(RhB)的光催化降解性能.研究表明,反应温度对NiFe_2O_4样品的微观结构与磁性有重要的影响,软磁相NiFe_2O_4的存在不但有效地提高了NiFe_2O_4/TiO_2纳米复合材料光催化性能,而且赋予了其良好的磁分离特性.  相似文献   

6.
以碳纤维为手性掺杂体,以Fe_3O_4与聚苯胺复合物为基质,制成手性复合材料.利用微波圆波导法在8.5~11.0GHz频率范围内测量了偏转角、轴比、复反射系数,计算出手性材料的介电常数、磁导率和手性参数.对手性材料电磁参数受频率和基质中Fe_3O_4浓度的影响进行了分析.实验结果表明用复合物作基质制作手性材料提高了电损耗、磁损耗和手性参数.  相似文献   

7.
有机-无机复合材料因其兼具有机聚合物和无机材料的优良特性,在热、气敏和磁学等方面赋予复合材料许多优异的特性。聚苯胺是一种制备条件温和,环境稳定性好的导电材料,但其较差的热稳定性限制了其应用。无机磁性材料的加入可以增强聚苯胺的热稳定性,同时可以改变其磁性以及物理、化学等方面的性能。以过硫酸铵为氧化剂和掺杂剂经原位氧化聚合制备铁酸镍(NiFe_2O_4)/聚苯胺(PANI)复合材料,用以提高聚苯胺的热稳定性。分别采用XRD、FTIR和SEM对产物的结构、晶型和形貌进行了表征,并借助TG测定了产物的热稳定性。结果表明,复合材料由NiFe_2O_4内核和外层PANI包覆而成,并且NiFe_2O_4微粒的含量为20%时,复合材料包覆效果和热稳定性最好。  相似文献   

8.
采用时域有限差分(FDTD)法计算了具有十字空隙周期结构的单层BiFe_(0.9)Co_(0.1)O_3、Sr_3Co_2Fe_(24)O_(41)以及BiFe_(0.9)Co_(0.1)O_3/Sr_3Co_2Fe_(24)O_(41)双层复合材料的微波反射率,研究空隙尺寸对材料吸波性能的影响.结果表明,适当尺寸的周期性十字空隙结构能有效地提高材料的吸波效果.当十字形空隙的尺寸为长l=16mm,宽h=2mm时,BiFe_(0.9)Co_(0.1)O_3在频率15.8GHz位置的吸收峰峰值-23.2d B、-10d B频宽3.2GHz,Sr_3Co_2Fe_(24)O_(41)在频率15.2GHz位置的吸收峰峰值-42.5d B、-10d B频宽6.5GHz,BiFe_(0.9)Co_(0.1)O_3/Sr_3Co_2Fe_(24)O_(41)在频率16.1GHz位置的吸收峰峰值-63d B、-10d B频宽为4.3GHz.  相似文献   

9.
在Fe_3O_4存在下,以聚乙烯吡咯烷酮(PVP)为分散剂和还原剂,利用简单的一步法制备了Fe_3O_4@SiO_2/Ag纳米复合材料。所制得的Fe_3O_4@SiO_2/Ag纳米复合物对罗丹明B(RhB)具有较好的表面拉曼光谱增强(SERS)效果,可以用作SERS基底。二氧化硅作为贵金属Ag纳米颗粒的载体,不仅可以起到分散贵金属的作用,还可以稳定金属相,更好地吸附RhB,使SERS效应得以稳定,可用于痕量检测,其检测极限可达1×10~(-12)mol/L。此外,该材料具有较好的磁性,方便回收再利用。该复合材料制备方法简便易行、条件温和,为合成其他纳米复合材料提供了启示。  相似文献   

10.
以Fe_3O_4为前驱体,采用溶剂热法制备了Fe_3O_4/NiFe-LDHs复合材料。利用X射线衍射仪、扫描电子显微镜、红外吸收光谱仪和交变梯度磁强计研究了添加剂的种类和用量对复合材料结构、形貌、结晶性等的影响。实验结果表明:添加剂离子与铁离子的络合能力影响Fe_3O_4/NiFeLDHs的生长;添加适量络合能力强的柠檬酸三钠可促进单一Fe_3O_4/NiFe-LDHs复合材料的生成;添加络合能力弱的酒石酸钾钠,易生成杂质相Ni(OH)_2。制备得到的Fe_3O_4/NiFe-LDHs复合材料均为顺磁性。  相似文献   

11.
采用溶胶-凝胶法分别在650、750、850、950℃下制备钡铁氧体,发现不同温度下制备的钡铁氧体形貌、大小以及分布明显不同.通过原位聚合法合成了不同形貌钡铁氧体/聚苯胺复合材料,红外光谱显示,聚苯胺的吸收峰由于钡铁氧体的掺入发生轻微的蓝移,证明2物质之间有化学相互作用.煅烧温度在750℃以上时,所制备的钡铁氧体结晶良好,并随着煅烧温度的升高,钡铁氧体的形貌由棒状变成片状或球形.850℃煅烧制备的钡铁氧体分散性良好,部分呈片状,其与聚苯胺组成的复合材料吸波性能最好,当涂层厚度为4mm时,它在6.9GHz频率取得最大反射损耗值-17.1dB,在5.7~8.7GHz频率反射损耗均低于-10dB,说明制备出了分散性良好、形貌独特的钡铁氧体,可以有效提高钡铁氧体聚苯胺复合材料的吸波性能.  相似文献   

12.
以天然鳞片石墨为原料,用改进的Hummers法氧化制备氧化石墨烯;以Fe Cl2,Fe Cl3为原料,用共沉淀法合成Co Fe_2O_4;再用一步水热合成法制备G/TiO_2/Co Fe_2O_4三元纳米复合材料.用FT-IR、XRD、AFM、TEM对氧化石墨烯和G/TiO_2/Co Fe_2O_4复合材料进行表征,并在紫外光照下对比G/TiO_2,TiO_2/Co Fe_2O_4,G/TiO_2/Co Fe_2O_4复合材料对亚甲基蓝的降解效果.结果表明,在紫外光照射下,G/TiO_2/Co Fe_2O_4复合材料光催化降解亚甲基蓝的催化效率明显大于单纯G/TiO_2,TiO_2/Co Fe_2O_4,光催化40 min后,脱色率达90%.G/TiO_2/Co Fe_2O_4复合材料不失为一种有潜力的光催化降解染料废水催化材料.  相似文献   

13.
在传统单极子天线的基础上,采用三种树枝型枝节的组合,设计出一种工作于S、C、X波段的三频点微带天线。天线的辐射枝节尺寸为23 mm×27 mm,工作于2.5 GHz、4.7 GHz、8.1 GHz三个频段。仿真及实物测试结果表明,天线在2.5 GHz处最小回波损耗为-22.4 d B,带宽435 MHz;在4.7 GHz处最小回波损耗为-26.3 d B,带宽454 MHz;在8.1 GHz处最小回波损耗为-23.3 d B,且实现了7~10.1 GHz的超宽带。该三频微带天线在无线局域网(WLAN)和超高频通信系统中将有较好的应用前景。  相似文献   

14.
采用蒸发酸纯化多壁碳纳米管(MWCNTs),共沉淀法制备Fe_3O_4/MWCNTs磁性复合材料.通过傅里叶红外光谱(FTIR)、透射电镜(TEM)、X射线衍射(XRD)、X射线光电子能谱分析(XPS)和磁性能检测(VSM)对合成的Fe_3O_4/MWCNTs磁性复合材料组成、结构、形貌、性能等进行表征,并对溶液中的Pb~(2+)进行吸附研究.结果表明:Fe_3O_4纳米颗粒成功嫁接到多壁碳纳米管的表面;Fe_3O_4/MWCNTs磁性复合材料具有超顺磁性,饱和磁化强度为50.10A·m~(-2)/kg,剩磁和矫顽力为0,可通过磁铁将Fe_3O_4/MWCNTs磁性复合材料从溶液中分离出来;Fe_3O_4/MWCNTs磁性复合材料吸附溶液中的Pb~(2+),开始的15min内吸附量达到43.57mg/g,6h后吸附达到平衡,平衡吸附量为50.28mg/g.  相似文献   

15.
以三氯化铁和醋酸钠为原料,采用水热法制备Fe_3O_4粉体,对比实心Fe_3O_4粉体在吸波性能上具备的优势。通过X射线衍射(XRD)分析Fe_3O_4粉体的物相结构;采用扫描电子显微镜(SEM)、透射电子显微镜(TEM)观测Fe_3O_4粉体的尺寸及形貌;使用矢量网络分析仪测试了同轴样品的电磁参数来计算泡状Fe_3O_4粉体的微波吸波性能。结果表明,制备的Fe_3O_4粉体为泡状结构,密度小于实心Fe_3O_4粉体,且介电常数实部明显升高。在0.5~18.0GHz频段,当厚度大于4mm时,其吸波性能相比实心Fe_3O_4粉体有一定优势。  相似文献   

16.
以Fe(NO_3)3·9H_2O为铁源,乙二醇为溶剂和还原剂,采用溶剂热法制备了Fe_3O_4磁性纳米颗粒.利用XRD、FT-IR和TEM对其进行了物相和形貌的表征,以4-氯苯酚(4-CP)为目标污染物,评价了其活化H_2O_2的性能.结果表明:制备的Fe_3O_4纳米颗粒近似呈球形,平均粒径约15 nm,能够有效地活化H_2O_2产生·OH并高效降解4-CP.在25℃,Fe_3O_4用量0.3 g·L~(-1),H_2O_2浓度1.6 mmol·L~(-1),初始pH=5.7时,所建立Fe_3O_4-H_2O_2氧化体系能在15 min内完全降解去除0.4 mmol·L~(-1) 4-CP,较相同条件下超声辅助反相共沉淀法制备的Fe_3O_4效果更好.Fe_3O_4活化H_2O_2降解4-CP的机理主要是因为新的溶剂热法可导致Fe_3O_4磁性纳米颗粒表面的富羟基化和配位作用.  相似文献   

17.
选用Fe_3O_4@SiO_2@ZnO作为基体材料,采用一步硫化法成功制备出Fe_3O_4@SiO_2@ZnO/ZnS纳米复合材料.通过XRD、SEM、TEM和XPS测试表征手段证实了ZnO的表面已转化成ZnS,构建出ZnO/ZnS核壳结构.VSM测试结果表明,制得的Fe_3O_4@SiO_2@ZnO/ZnS纳米复合材料具有明显的超顺磁性,利于材料的回收再利用.在Fe_3O_4@SiO_2@ZnO/ZnS纳米复合材料的紫外-可见吸收光谱中,不仅观测到了ZnO和ZnS的特征吸收边,而且在可见光区域出现了明显增强的吸收边.通过对四环素的可见光催化降解实验,证实了Fe_3O_4@SiO_2@ZnO/ZnS纳米复合材料具有优异的可见光催化活性.  相似文献   

18.
首次合成了葡萄糖铁复合物GCFe,以GCFe为前驱体,采用原位煅烧法制备了纳米Fe_3O_4@C复合材料.利用TEM、IR、XRD、XPS、Raman光谱等技术,对该复合材料的结构进行了表征.作为锂离子电池负极,Fe_3O_4@C复合材料呈现出优异的倍率性能和循环稳定性,在电流密度为2 000 mAh·g~(-1)时,放电比容量为825.4 mAh·g~(-1),经过180次循环后,无明显的容量衰减.  相似文献   

19.
A novel type of composite absorber,i.e.Fe_2O_3/Fe_3O_4/MWCNTs composites(0%,1.7%and 5%MWCNTs),with microwave absorption properties was successfully fabricated by a facile hydrothermal method.The preparedα-Fe_2O_3/Fe_3O_4nanoparticles displayed rod-shaped morphology.The complex permittivity and permeability of the Fe_2O_3/Fe_3O_4/MWCNTs composites distinctly increased,furthermore,with the introduction of MWCNTs,the Fe_2O_3/Fe_3O_4/MWCNTs composites exhibited fine microwave absorption performance with strong absorption and wide absorption band.In particular,for Fe_2O_3/Fe_3O_4/1.7%MWCNTs composite with an absorber thickness of 2.5 mm,the reflection loss(RL)reached a minimum of-44.1 d B at 10.4 GHz and the effective absorption bandwidth(RL-10 d B)covered 3.3 GHz.The enhanced microwave absorption performance of the Fe_2O_3/Fe_3O_4/MWCNTs composites was attributed to the high dielectric loss and improved impedance matching which was closely related to the rod-shaped morphology of Fe_2O_3,Fe_3O_4and the introduction of MWCNTs.  相似文献   

20.
通过原位聚合方法制备了聚吡咯(PPy)/磷酸铁锂(LiFePO4)复合材料.傅立叶红外光谱测试表明PPy与LiFePO4之间发生了相互作用;采用扫描电镜观察了PPy在LiFePO4表面的分布情况;采用四探针法、电化学阻抗法及恒电流充放电法测试了复合材料的性能.结果表明:PPy的质量分数为4.69%的PPy/LiFePO4复合材料具有最佳的电化学性能,最小电荷转移电阻为98.83Ω,最大交换电流为0.256 mA,首次放电容量达到154.34 mAh/g,平台容量和平台率分别为133.48 mAh/g和86.48%,并且具有较好的循环性能及倍率性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号