首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 218 毫秒
1.
以烯丙胺等离子体对聚丙烯膜表面进行处理后,利用表面生成的氨基功能基团进行过氧化物酶的固定化,所采用的固定化方法主要有吸附法、戊二醛交联法和分子识别法.结果表明通过等离子体处理后聚丙烯膜表面的氨基基团可以有效地提高酶固定化效率,其中分子识别法可以得到具有最高酶活和酶稳定性的固定化酶膜.  相似文献   

2.
利用辉光放电电解等离子体技术对铜基底表面进行活化,再经硬脂酸修饰,得到铜基底超疏水性材料.考查了Na2SO4浓度、放电电压、放电时间、硬脂酸-甲醇溶液浓度、接枝时间以及接枝温度对超疏水表面性能的影响.用接触角仪、X射线衍射(XRD)、X射线光电子能谱(XPS)、红外光谱(FTIR)对铜表面的润湿性、表面元素组成及结构进行了表征和分析.结果表明,经修饰的铜基底表面具有良好的疏水性,接触角高达155.30°,滚动角小于5°,且稳定性良好.  相似文献   

3.
在特定的远程氧等离子体灭菌条件下,通过接触角测定、质量损失率计算、微生物培养和体外凝血实验,考察了染菌载体医用聚四氟乙烯(PTFE)表面的物理、化学及医学使用性能在灭菌前、后发生的变化,并通过X射线光电子能谱进行了表面分析.结果表明:远程氧等离子体灭菌在载体PTFE膜表面引入了含氧极性基团并取代了F元素,从而使PTFE表面的亲水性在距放电中心0~40 cm范围内得到明显增强,且随距离的增加,表面受损程度得到了有效抑制;PTFE膜表面的生物相容性在灭菌后有较大幅度的增强,并在距放电中心40 cm处获得了最佳改善效果;亲水性是影响PTFE表面生物相容性好坏的关键因素,而与刻蚀度没有特定关系,只有当亲水性与刻蚀度达到最佳的平衡状态时,才能使生物相容性得到最大程度的改善.  相似文献   

4.
用核酸适体修饰的纳米金共振散射光谱探针可实现对微纳空间内凝血酶的特异性识别与检测.提出了一种基于局域表面等离子体共振-暗场显微光谱联用技术的分析方法,研究了局域在金纳米粒子表面的生物分子的识别过程对局域表面等离子体共振散射光谱的影响.研究了单颗粒纳米粒子的形貌特征,实现了单分子层面上生物分子识别过程的追踪.  相似文献   

5.
等离子体处理对稻秸/聚乙烯复合材料界面的改性   总被引:1,自引:0,他引:1  
采用红外光谱、表面自由基、动态热机械性能分析和电子显微镜等分析方法,研究了氮气低温等离子体处理对聚乙烯塑料表面改性效果以及对稻秸与聚乙烯界面相容性的影响。结果表明:经氮气等离子体处理,聚乙烯塑料分子上引入了极性基团,提高了塑料的表面润湿性和表面反应活性,改善了稻秸纤维与聚乙烯塑料的界面相容性,并使复合材料力学性能(存储模量)得以提高;等离子体处理时间和强度对塑料表面的改性效果有较大影响。  相似文献   

6.
低温等离子体在材料表面改性中的应用   总被引:11,自引:0,他引:11  
概要介绍了目前低温等离子体在材料表面改性方面的研究进展。材料的许多特性,如金属的表面硬度、耐腐蚀、耐磨擦,聚合物的表面浸润性、亲性性、粘附性以及生物功能材料的生物相容性等,决定了材料的应用。低温等离子体并不改变材料的板材特性而仅影响材料的表面特性。对金属如不锈钢等用氮气等离子源离子注入,可以在表面形成Fe2N,Fe3N和Fe4N的铁的氮化物,提高表面的硬度和耐腐蚀性能;氧气、氮气等离子体会在聚合物材料表面形成微针孔结构,改善其浸润性、粘附性;用等离子聚合法在生物材料表面聚合高分子材料,如氧化对二甲苯可以降低血小板的吸附。因此,低温等离子体在材料的表面改性方面有很好的应用前景。  相似文献   

7.
制备了棒状纳米金颗粒并对其表面进行了修饰,研究了其生物相容性以及运载荧光物质进入细胞的功能.所制备的材料通过聚乙二醇稳定、采用双修饰的方法获得了具有活性-NH2基团存在、稳定性好且生物相容性高的表面修饰的金纳米棒.采用透射电子显微镜和紫外可见吸收光谱对表面修饰的金纳米棒进行了表征,运用MTT比色分析法通过细胞毒性研究了表面修饰的金纳米棒的生物相容性,用流式细胞仪和激光共聚焦显微镜考察了其运载荧光物质进入细胞的功能.结果表明,表面修饰的金纳米棒具有良好的生物相容性,具有作为荧光物质或药物载体的应用前景,可应用于疾病的诊断治疗.  相似文献   

8.
优越的力学性能,理想的生物相容性和独特的降解特性使镁及其合金成为革命性的金属生物材料,但耐蚀性差限制了其应用潜力的发挥,为此提高其耐腐蚀性成为重要的研究课题.等离子体注入是既有效又方便的表面改性技术.本文对纯镁进行硅等离子体注入表面改性,通过光电子能谱检测硅元素注入深度和化合价态,并使用动电位极化测试和交流阻抗谱评价处理前后样品在模拟体液中的腐蚀行为.实验结果表明,经硅等离子体注入的纯镁表面形成一层由二氧化硅和氧化镁组成的复合氧化膜.在电化学测试中,处理后的样品呈现较高的腐蚀电位和较低的腐蚀电流,容抗环明显增大.这些结论均表明硅注入后在纯镁表面形成的复合氧化膜减缓了腐蚀速率,提高了耐腐蚀性能.  相似文献   

9.
等离子体引发聚乙烯表面肝素化及其生物相容性   总被引:4,自引:0,他引:4  
目的 研究等离子体引发低密度聚乙烯(LDPE)表面肝素化以及肝素化LDPE表面抗凝血性和组织相容性。方法 利用等离子体引发技术在LDPE膜表面接枝聚乙二醇(PEG)和肝素,用体外凝血时间及细胞生长试验考察改性LDPE表面的生物相容性。  相似文献   

10.
为了提高脑深部刺激电极的生物相容性,降低脑组织的免疫反应,减少或抑制电极周围包裹物的形成,对电极植入端聚氨酯材料进行了表面改性处理.首先用N2/H2进行等离子体处理,在电极表面生成活性基团——氨基,再利用电极表面的氨基基团与YIGSR多肽分子发生聚合反应,从而实现在电极表面修饰上对神经细胞具有促进生长作用的多肽分子.改性电极的大鼠植入实验结果发现,改性电极能够在一定程度上减少胶质包裹物的形成,有利于电极与神经细胞之间接触,增加有效刺激体积,证明了电极聚氨酯材料表面接枝聚合生物大分子的可行性,对今后电极表面改性的深入研究具有一定的参考意义.  相似文献   

11.
冷等离子体对聚酯(PET)表面改性的XPS研究   总被引:4,自引:0,他引:4  
采用不同工作气体的冷等离子体对聚酯(PET)进行表面改性,并用XPS分析方法研究PET表面的组成和化学结构的变化,从而探索冷等离子体表面改性的机理和实验条件  相似文献   

12.
研究了聚丙烯腈 (PAN)平板超滤膜的低温氧等离子体表面改性 .结果表明 ,改性后的 PAN超滤膜透水率降低 ,截留率上升 .研究了低温等离子体条件 (放电功率、反应腔压力、改性处理时间 )对改性结果的影响 .实验研究表明 ,低温等离子体表面改性技术可用于 PAN超滤膜的改性 .  相似文献   

13.
矿物粉体作硅橡胶制品增强剂的研究   总被引:3,自引:0,他引:3  
以天然矿物为原料,通过超细粉碎的表面化学改性,改变矿物粉体的性质和表面性质,制备硅橡胶增强填料。通过粉体表面能和硫化胶力学性能的测定,研究不同矿物,表面积,表面能和偶联剂对硅橡胶制品性能的影响。  相似文献   

14.
低温等离子体处理对羊毛织物性能的影响   总被引:1,自引:0,他引:1  
采用空气低温等离子体对羊毛表面进行改性处理,探讨了等离子体处理对羊毛织物抗毡缩性、强力、白度、润湿性、染色性能等的影响.正交试验结果表明:等离子体处理羊毛织物的实验室最佳工艺为时间3min、压强50Pa、功率150W.经空气低温等离子体处理,羊毛织物的毡缩率和白度降低,而润湿性、强力和弱酸性普拉红B染色K/S值提高.单独经过空气等离子体处理的羊毛织物达不到"机可洗"的要求.  相似文献   

15.
等离子体处理对非织造布表面润湿性的效应   总被引:9,自引:0,他引:9  
通过用等离子体处理非织造布的方法来提高其表面润湿性。电晕放电和低压辉光放电都对丙纶非织造布表面的润湿性有改善,低压辉光放电不涤纶非织造布表面的润湿性有改善。电晕放电处理非织造布的表面改性效果及改善维持时间都不如低压辉光放电。用等离子体处理非织造布来改善其表面润湿性的效果不能维持很长时间。等离子体处理可减小丙纶、涤纶非织造布表面与水的接触角,从而提高其表面的再润湿性。  相似文献   

16.
空气低温等离子体对涤纶纤维的表面改性作用   总被引:4,自引:0,他引:4  
观测了空气低温等离子体对涤纶纤维的表面改性作用。结果表明,在本实验条件下,涤纶纤维经空气低温等离子体处理0.5小时,吸水性能最佳,1.0小时交联度最大,电镜观察表面改性明显。  相似文献   

17.
简述等离子体的物理概念及其获得方法。重点介绍等离子体技术在材料领域中的表面改性,并论述了PCVD法涂Si的原理及动力学和热力学问题。  相似文献   

18.
丝素在生物医学领域中的应用   总被引:8,自引:0,他引:8       下载免费PDF全文
讨论了丝素(silk fibroin,SF)与生物医学领域应用相关的基本性质,以及在生物分析及药物缓释载体,人工器官及组织工程支撑体材料中的应用现状,结论认为:丝素具有固化结晶方式的多样化。易于保持高度生物亲和性以及形成特殊的多孔性网状结构。丝素还具有优良的成膜特性,并且通过与其它一些天然高分子材料的复合与化学改性,可以进一步改善其物理性能,从而适宜于构建新型药物载体与人工器官,同时,针对丝素蛋白在体的生物相容性,在体降解特性方面存在的问题,认为其在体变化机制不仅取决于与之接触体液的化学构成,也与温度,力学环境等生物物理因素有关,因此其在体变化机制是生物力学与生物流变学的因素与生物化学因素协同控制的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号