首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Summary A review is presented of the recent literature in the areas of physics which deal with radiation effects on man and animals. Some consideration is given to natural and artificial radiation sources such as cosmic rays, radon and high energy accelerators. The interaction of radiation with matter is treated if it is related to an energy deposition pattern relevant to biological effects. Dosimetry is also treated, with special emphasis on papers dealing with spatial dose distribution on a microscopic level, and radiobiological models relating the energy deposition pattern to biological effects are cited. New techniques in the medical application of radiation in diagnostics and therapy are briefly mentioned.  相似文献   

2.
U Hagen 《Experientia》1989,45(1):7-12
In order to analyze the mechanisms of biological radiation effects, the events after radiation energy absorption in irradiated organisms have to be studied by physico-chemical and biochemical methods. The radiation effects in vitro on biomolecules, especially DNA, are described, as well as their alterations in irradiated cells. Whereas in vitro, in aqueous solution, predominantly OH radicals are effective and lead to damage in single moieties of the DNA, in vivo the direct absorption of radiation energy leads to 'locally multiply-damaged sites', which produce DNA double-strand breaks and locally denatured regions. DNA damage will be repaired in irradiated cells. Error free repair leads to the original nucleotide sequence in the genome by excision or by recombination. "Error prone repair"(mutagenic repair), leads to mutation. However, the biochemistry of these processes, regulated by a number of genes, is poorly understood. In addition, more complex reactions, such as gene amplification and transposition of mobile gene elements, are responsible for mutation or malignant transformation.  相似文献   

3.
Summary Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors — biological variability, stochastic reaction of the cell, and the statistics of energy deposition —that co-determine their shape. The global parameters mean inactivation dose, , and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action.  相似文献   

4.
Summary Two possibilities for the action of radiations on biological objects are still remaining: the effect by radiation-hits and the action by photochemical or radiochemical effects. By means of irradiating well-known chemical «model-substances» one may be able to decide between these two possibilities and to understand the biological primary effect of radiations.Both of the theoretical perceptions are discussed and compared with the empirical facts. It is shown that in all well examinated cases of radiation effects upon biological elements or chemical systems, water or an other diluting is of essential importance. Radiation-energy is conducted from point of absorption to point of action by means of electronic transport or diffusion. Diffusion seems much more probable in biological systems.  相似文献   

5.
While the biological effects of high-dose-ionizing radiation on human health are well characterized, the consequences of low-dose radiation exposure remain poorly defined, even though they are of major importance for radiological protection. Lymphocytes are very radiosensitive, and radiation-induced health effects may result from immune cell loss and/or immune system impairment. To decipher the mechanisms of effects of low doses, we analyzed the modulation of the T-cell receptor gene repertoire in mice exposed to a single low (0.1 Gy) or high (1 Gy) dose of radiation. High-throughput T-cell receptor gene profiling was used to visualize T-lymphocyte dynamics over time in control and irradiated mice. Radiation exposure induces “aging-like” effects on the T-cell receptor gene repertoire, detectable as early as 1 month post-exposure and for at least 6 months. Surprisingly, these effects are more pronounced in animals exposed to 0.1 Gy than to 1 Gy, where partial correction occurs over time. Importantly, we found that low-dose radiation effects are partially due to the hematopoietic stem cell impairment. Collectively, our findings show that acute low-dose radiation exposure specifically results in long-term alterations of the T-lymphocyte repertoire.  相似文献   

6.
Dose-effect relations and, specifically, cell survival curves are surveyed with emphasis on the interplay of the random factors--biological variability, stochastic reaction of the cell, and the statistics of energy deposition--that co-determine their shape. The global parameters mean inactivation dose, D, and coefficient of variance, V, represent this interplay better than conventional parameters. Mechanisms such as lesion interaction, misrepair, repair overload, or repair depletion have been invoked to explain sigmoid dose dependencies, but these notions are partly synonymous and are largely undistinguishable on the basis of observed dose dependencies. All dose dependencies reflect, to varying degree, the microdosimetric fluctuations of energy deposition, and these have certain implications, e.g. the linearity of the dose dependence at small doses, that apply regardless of unresolved molecular mechanisms of cellular radiation action.  相似文献   

7.
Biochemical aspects of radiation biology   总被引:1,自引:0,他引:1  
Summary In order to analyze the mechanisms of biological radiation effects, the events after radiation energy absorption in irradiated organisms have to be studied by physico-chemical and biochemical methods. The radiation effects in vitro on biomolecules, especially DNA, are described, as well as their alterations in irradiated cells. Whereas in vitro, in aqueous solution, predominantly OH radicals are effective and lead to damage in single moieties of the DNA, in vivo the direct absorption of radiation energy leads to locally multiply-damaged sites, which produce DNA double-strand breaks and locally denatured regions. DNA damage will be repaired in irradiated cells. Error free repair leads to the original nucleotide sequence in the genome by excision or by recombination. Error prone repair (mutagenic repair), leads to mutation. However, the biochemistry of these processes, regulated by a number of genes, is poorly understood. In addition, more complex reactions, such as gene amplification and transposition of mobile gene elements, are responsible for mutation or malignant transformation.  相似文献   

8.
21世纪初辐射防护的几个基本问题   总被引:2,自引:0,他引:2  
辐射防护已有近百年的历史。20世纪下半叶随着核能和核技术应用的发展,辐射防护得到了较大的发展。但仍然有许多基本问题有待进一步研究。作为辐射防护基础的线性无阈理论受到挑战。从辐射防护观点出发,基于当前的科学水平,应该认为选择线性无阈模式是合理的。但从科学上说辐射剂量效应模式尚有待进一步研究。辐射环境影响是辐射防护面临的一个新问题。其生物学终点、参考生物和剂量评价模式等都有待深入研究。利益相关者的参与是解决放射性废物管理和核安全困境的重要途径,其参与方式和时机等值得进一步研究。  相似文献   

9.
A A Gurwitsch 《Experientia》1988,44(7):545-550
The 'miracle of caryokinesis' was the starting point that stimulated Alexander G. Gurwitsch to carry out his famous 'mitogenetic' experiments in 1923. The results obtained confirmed his hypothesis of a weak radiation from cells, which is able to trigger the growth of other cells. Extensive experimental work within the first two decades after this discovery indicated that the problem of mitogenetic radiation is generally related to the biological significance of UV-radiation. Both 'energetic' and 'informational' aspects have to be considered, namely radiation effective in activating molecules, and that involved in arranging them into larger units. The molecular organization of biological structures is evidently governed by nonequilibrium conditions needing the uptake or emission of radiation. These concepts of A. G. Gurwitsch can be linked with modern approaches based on hypotheses of coherence in biology, 'synergetics' and 'dissipative structures'. However, the question of causal interrelationships between this part of non-equilibrium radiation and biological matter on different levels of evolution has to be solved now.  相似文献   

10.
The atmosphere is part of the environment with which the human organism is permanently confronted. Epidemiological research investigates the occurrence of effects on morbidity and mortality due to heat, cold, air pollution and changes in the weather. Concentrating on aspects of the environment relevant for medical questions, three major complexes of effects can be discriminated: the complex conditions of heat exchange, the direct biological effects of solar radiation, and air pollution. Biometeorological knowledge can serve to assess the atmospheric environment, and can also be of help in the field of preventive planning, to conserve and develop the climate as a natural resource with regard to man's health, well-being and performance.  相似文献   

11.
The development of radiobiology from the very early detection of the biological action of X-rays to the knowledge of today is described in sections on radiation chemistry and biochemistry, mutation and cancer induction, and embryonic damage, as well as the dependence of radiation response on radiation quality and temporal dose distribution (repair) and the interaction with other factors. For medicine radiobiology serves as a basis for radiotherapy and radiological protection. The effect of very low doses, and their possible biopositive effect (hormesis and adaptive response), is also discussed, as are the health hazard of radon, health risks after the Chernobyl accident, and space radiobiology. The radiobiology of the future will be concerned with biomolecular and genetic implications, problems of damage and repair, and connected problems like hormesis.  相似文献   

12.
Ultrastruttura della calcificazione distrofica renale da sublimato   总被引:2,自引:0,他引:2  
Summary Carrying on the researches on the biological process of calcium deposition, the role of the substructures in the precipitation of calcium salts in the loci of distrophic calcification of kidney tubules following sublimate injections has been investigated. In agreement with the histochemical data previously found, the presence of collagen fibres in these sites is excluded; the morphological appearance of crystal deposits is described. The importance of mitochondria in the calcium ion deposition in kidney tubules is discussed.  相似文献   

13.
Summary Through their catalytic abilities microbes can increase rates of chemical reactions which would take a very long time to reach equilibrium under abiotic conditions. Microbes also alter the concentration and composition of chemicals in the environment, thereby creating new conditions for further biological and chemical reactions. Rates of degradation and possible indirect consequences on leaching rates in waste repositories are a function of the presence or absence of microbes and of the conditions which allow them to become catalytically active.Microbially mediated reactions are no exception to the rule that all chemical processes are basically governed by thermodynamic laws. Naturally occurring processes proceed in the direction that leads to the minimal potential energy level attained when equilibrium is reached. A continuous supply of energy to an ecosystem in the form of biochemically unstable compounds maintains non-equilibrium conditions, a prerequisite for all chemotrophic life. Energy is released as a chemical reaction progresses towards equilibrium. Microbes scavenge that portion of the free energy of reaction (Gr) which can be converted into biochemically usable forms during the chemical oxidation processes. As electrontransfer catalysts, the microorganisms mediate reactions which are thermodynamically possible thereby stimulating reaction rates. Decomposition and mineralization in systems without a continuous supply of substrates and oxidants will lead to equilibria with minimal free energy levels at which point further microbial action would cease. The differences in the free energy levels of reactions (Gr), represent the maximal energy which is available to microorganisms for maintenance and growth. How much of the released free energy will be conserved in energy-rich bonds, compounds (e.g. ATP), and chemical potentials (e.g. emf) useful for biosynthesis and biological work is characteristic for the microbes involved and the processes and metabolic routes employed.Materials whose elements are not present in the most oxidized form attainable in the oxic environment of our planet are potentially reactive. Microbial activities are associated only with chemical reactions whose free energy changes are exergonic. This should be kept in mind for all investigations related to the role of microbes in repositories or in the layout of proper waste storage conditions. Rigorous application of thermodynamic concepts to environmental microbiology allows one to develop models and design experiments which are often difficult to conceive of in complex natural systems from physiological information alone. Thermodynamic considerations also aid in selecting proper deposition conditions and in carrying out thoughtful experiments in areas related to microbial ecology of waste repositories.  相似文献   

14.
Radiation carcinogenesis in experimental animals   总被引:1,自引:0,他引:1  
Exposure of man to relatively high doses of ionizing radiation is generally restricted to accidental situations, with very limited knowledge about the actual doses received. Animal experiments can be performed under standardized and controlled conditions and can provide information on the dose-response relationships for radiation carcinogenesis. The risk of inducing neoplastic late effects after total-body irradiation with relatively high doses has been demonstrated for larger animals, such as monkeys and dogs. The bone marrow, the mammary glands and the lungs are among the tissues with the highest susceptibility for radiation carcinogenesis. Experimental results on tumour induction in rodents are summarized with emphasis on the effectiveness in dependence on radiation quality and fractionation or dose rate.  相似文献   

15.
Summary Exposure of man to relatively high doses of ionizing radiation is generally restricted to accidental situations, with very limited knowledge about the actual doses received. Animal experiments can be performed under standardized and controlled conditions and can provide information on the dose-response relationships for radiation carcinogenesis.The risk of inducing neoplastic late effects after total-body irradiation with relatively high doses has been demonstrated for larger animals, such as monkeys and dogs. The bone marrow, the mammary glands and the lungs are among the tissues with the highest susceptibility for radiation carcinogenesis. Experimental results on tumour induction in rodents are summarized with emphasis on the effectiveness in dependence on radiation quality and fractionation or dose rate.  相似文献   

16.
Summary Using an electronic analog model, it was possible to analyse steady state transitions of energy fluxes during temperature adaption, accomodation and other responses of biological open systems. This model reproduced and quantitatively calculated expected responses on the basic of transport equations derived from irreversible thermodynamics. It was found that this model could account for certain observed biological effects.  相似文献   

17.
Summary Prenatal development, characterized by intensive cell proliferation, cell differentiation and cell migration, shows a high radiosensitivity. Therefore, radiation exposure of embryos and fetuses is of great concern for radiological protection and human health. Irradiation during gestation can cause death, growth disorders, malformations, functional impairment and malignant diseases in childhood. These effects are strongly dependent on the developmental stage at exposure and on the radiation dose. The first trimester of pregnancy is regarded as the period with the highest risk for malformation and cancer induction. The developing nervous system shows a special susceptibility to ionizing radiation over a long period and is therefore of great significance for risk estimation. Knowledge about radiation effects on prenatal development has been derived from animal experimentation and from the exposure of human embryos. There is evidence that doses between 1 and 10 cGy may lead to developmental anomalies and that the radiation response can be modified by additional factors.  相似文献   

18.
C Michel 《Experientia》1989,45(1):69-77
Prenatal development, characterized by intensive cell proliferation, cell differentiation and cell migration, shows a high radiosensitivity. Therefore, radiation exposure of embryos and fetuses is of great concern for radiological protection and human health. Irradiation during gestation can cause death, growth disorders, malformations, functional impairment and malignant diseases in childhood. These effects are strongly dependent on the developmental stage at exposure and on the radiation dose. The first trimester of pregnancy is regarded as the period with the highest risk for malformation and cancer induction. The developing nervous system shows a special susceptibility to ionizing radiation over a long period and is therefore of great significance for risk estimation. Knowledge about radiation effects on prenatal development has been derived from animal experimentation and from the exposure of human embryos. There is evidence that doses between 1 and 10 cGy may lead to developmental anomalies and that the radiation response can be modified by additional factors.  相似文献   

19.
Male and female gametes of Drosophila were treated with various doses of ionizing radiations: X-rays at different energy, and gamma-rays from 2 sources given singly and in 2 temporal sequences. The induced lethality was assessed in successive developmental stages by scoring the number of eggs, larvae and adults. The results clearly show that the effects of various radiations appear in terms of difference among developmental stages and/or between treated sexes/genotypes. It is suggested that the various energies affect different gene functions which are not completely independent, as supported by the non-additive effects of the two temporal sequences.  相似文献   

20.
Luminescence research and its relation to ultraweak cell radiation   总被引:3,自引:0,他引:3  
Summary The fundamental laws of photochemistry and the essential results of experimental research on ultraweak cell radiation are presented. By comparing all the facts it can be concluded that the phenomena discussed may arise from a variety of possible reactions and sources. Recombination reactions of certain radicals actually do release sufficient energy to generate UV-photons of the intensity under consideration. On the other hand, stimulated emission cannot be excluded in view of the distinct deviation of the radiation field from thermal equilibrium. There exist, however, various other candidates, such as direct emitters like flavins, indoles, porphyrins, carbonyl derivatives and aromatic compounds, and molecular oxygen and its various species, as well as collective molecular interactions, e.g. dimole or exciplex transitions, triplet-triplet annihilation, collective hydrolysis, electric field effects in membranes, etc.Careful biochemical and biophysical experiments are still necessary to find answers to all the questions that remain; not only individual problems have to be solved, but it is important to keep in mind the interrelationships between certain reactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号