共查询到18条相似文献,搜索用时 109 毫秒
1.
研究求解一维Fisher-Kolmogorov方程的高精度差分格式,给出了三层线性化紧差分格式,证明了解的存在唯一性及在L"范数下时间方向二阶收敛,空间方向四阶收敛.最后通过数值算例,验证差分格式是有效的. 相似文献
2.
针对由铰链梁横向振动模型而建立的四阶微积分方程,提出紧差分格式进行求解,利用Newton型迭代法处理积分项,给出差分格式解的存在性、收敛性和稳定性的证明.数值结果表明:格式的精度为O(h4). 相似文献
3.
通过引入变量将方程从形式上降阶,提出了求解一类拟线性神经传播方程的紧局部一维(LOD)差分格式,并应用能量方法给出了格式的误差估计,得到该格式在L^2模下具有O(Δt^2+h^4)的精度.最后通过数值例子验证了算法的有效性. 相似文献
4.
数值求解Poisson方程的四阶紧致差分格式 总被引:1,自引:0,他引:1
四振夫 《宁夏大学学报(自然科学版)》1995,16(3):22-25
文章在九结点正方形网格图下给出了数值解二维Poisson方程的一类简单、有效,且对非齐次项易以不同离散形式表示的四阶紧致差分格式,最后通过算例对文中一些典型格进行了验证。 相似文献
5.
对波数很大的3维Helmholtz方程提出了2个新的高阶紧致差分格式.格式主要优点是高精度且所用模板小.为此充分利用原方程构造出了2个4阶精度的格式,其中一个格式的截断误差主项与波数k有关,另一个无关.最后的数值结果和理论分析是互相一致的. 相似文献
6.
研究二维抛物型方程的紧交替方向隐式差分格式.首先综合运用算子方法导出紧差分格式,并给出了差分格式截断误差的表达式;其次引进过渡层变量,给出了紧交替方向隐式差分格式算法;接着利用Fourier稳定性分析方法证明了差分格式的稳定性和收敛性,且收敛阶为O(T2+h4);最后给出了数值例子,数值结果和理论结果是吻合的. 相似文献
7.
胡劲松 《云南大学学报(自然科学版)》2010,32(1):1-5
对Benjamin-Bona-Mahony(BBM)方程的初边值问题进行了数值研究,提出了一个3层拟紧致隐式差分格式,讨论了差分解的存在唯一性,并利用离散泛函分析方法分析了该格式的二阶收敛性与稳定性,并利用数值实验进行了验证.
相似文献
8.
9.
本文对一类带有齐次边界条件的广义Rosenau-KdV-RLW方程的初边值问题进行了数值研究,提出了一个两层非线性Crank-Nicolson差分格式,格式合理地模拟了原问题的两个守恒性质.然后,本文证明了差分解的存在唯一性,并利用能量方法分析了该格式的二阶收敛性与无条件稳定性.数值实验表明该方法是可靠的. 相似文献
10.
田振夫 《宁夏大学学报(自然科学版)》1995,16(1):36-40
提出一维定常对流扩散方程的一种高精度差分格式。该格式呈现指数型,具有四阶精度,数值算例表明,该格式较其它格式具有更高精度。 相似文献
11.
构造了一个新的紧致差分格式对 Klein-Gordon-Schrodinger(KGS)耦合方程的周期边值问题进行数值研究,该格式是非耦合且线性的,因此具有更快的计算速度,且便于并行计算。同时讨论了该格式的守恒性质,并在先验估计的基础上运用能量方法分析了差分格式的收敛性,收敛阶是 O(τ^2+h4)。数值实验也证明了该格式的有效性。 相似文献
12.
初日辉 《徐州师范大学学报(自然科学版)》2014,(2):53-57
对带五次项的非线性Schrodinger方程提出了一个紧致差分格式,使格式的收敛阶达到 O(τ2+ h4)。运用能量的方法证明了离散的守恒律,并证明了差分格式的稳定性与收敛性。数值实验结果验证了理论的证明。 相似文献
13.
针对一维定常对流扩散反应方程,提出了一种四阶精度的有理型紧致差分格式,其局部截断误差为O(h4);然后通过Richardson外推技术和算子插值法将本文格式的精度提高到六阶.因为格式仅涉及到3个网格基架点,所以对于Dirichlet边值问题,由差分格式可得三对角线性方程组,可采用追赶法进行求解.最后通过数值算例验证了本文方法的精确性和可靠性. 相似文献
14.
《云南民族大学学报(自然科学版)》2015,(5):382-385
将指数变换u(x,t)=p(x,t)exp(k2εx)应用于一维对流扩散方程,对空间变量x应用紧致差分格式,时间变量t采用二级四阶Runge-Kutta方法,提出了精度为o(τ4+h4)的绝对稳定的差分格式,讨论了稳定性.最后通过数值算例说明该格式的有效性. 相似文献
15.
对二维Kuramoto-Tsuzuki方程混合初边值问题建立了线性化Grank-Nicolson格式,证明了差分格式解存在的唯一性、收敛性,并证明了收敛阶为O(τ+h2)。 相似文献
16.
对一维变系数的对流扩散方程提出了一个紧致差分格式,从而将格式的收敛阶提高为O(τ2+h4),通过Fourier级数的方法和Lax等价性定理证明了差分格式的稳定性和收敛性,数值实验结果很好地验证了理论的正确性. 相似文献
17.
作者对一维半线性色散耗散波动方程建立了一类紧致差分格式,讨论了差分解的存在唯一性,分析了该格式的收敛性、稳定性,得到了收敛阶为O(τ2+h4).数值试验验证了方法的有效性. 相似文献
18.
基于二阶导数的四阶Padé型紧致差分逼近式,并结合原方程本身,得到了二维Helm-holtz一种四阶精度的紧致差分格式.该格式在每个空间方向上只涉及到三个点处的未知量及其二阶导数值,边界处对于二阶导数利用四阶显式偏心格式.然后,利用Richardson外推法、算子插值法及二阶导数在边界点处的六阶显式偏心格式,将本文构造的二维Helmholtz方程四阶紧致差分格式的精度提高到六阶.最后,通过数值实验验证了本文方法的精确性和可靠性. 相似文献