首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Summary Considerable evidence from a variety of experimental procedures indicates that the phosphorylation of myosin is involved in the regulation of contractile activity in smooth muscle. Phosphorylation of the 20,000-dalton myosin light chains is required to initiate crossbridge cycling and this is consistent with the observation that the actin-activated Mg2+-ATPase activity of myosin is phosphorylation-dependent. In the simplest interpretation of this process it may be proposed that phosphorylation acts as an on-off switch. Clearly this cannot explain the observed complexity of smooth muscle contractile behavior and such may imply either that additional mechanisms are involved or that the role of myosin phosphorylation is not fully appreciated. Recently it has been shown that monomeric smooth muscle myosin can exist in a folded and an extended conformation and that each form is characterized by distinct enzymatic properties. Under appropriate solvent conditions phosphorylation of myosin favors the extended conformation. It is tentatively suggest that this, or an analogous, transition might be involved in the regulation of the smooth muscle contractile apparatus, and this possibility is discussed.The authors are supported by grants HL 23615 and HL 20984 from the National Institutes of Health.  相似文献   

3.
Summary The contraction induced by a Ca2+-independent myosin light chain kinase (MLCK-) was characterized in terms of isometric force (Fo), immediate elastic recoil (SE), unloaded shortening velocity (Vus), shortening under a constant load and ATPase activity of chemically skinned smooth muscle preparations. These parameters were compared to those measured in a Ca2+-induced contraction to assess the nature of cross bridge interaction in the MLCK-induced contraction. Fo developed in chicken gizzard fibers as well as SE were similar in contractions elicited by either agent. Vus in the contraction induced by MLCK-(0.36 mg/ml) was similar though averaged 39.3±8.9% less than Vus induced by Ca2+ (1.6x10–6M) in the control fibers. Addition of Ca2+ (1.6x10–6M) to a contraction induced by MLCK-resulted in small increases in both Fo and Vus. Shortening under a constant load was similar for both types of contractions. The contraction induced by MLCK-was accompanied by an increased rate of ATP hydrolysis. The MLCK-induced contraction is thus kinetically similar though not identical to a contraction induced by Ca2+. We conclude that with respect to actin-myosin interaction, MLCK- and Ca2+-induced contractions are similar.  相似文献   

4.
5.
Summary Freezing, deep-etching and rotary shadowing techniques have been applied to study smooth muscle ultrastructure. The results show some new aspects of intracellular and extracellular connections, interior views of the sarcoplasmic reticulum showing a luminal content, coated pits and vesicles, contractile filaments and other organelles in smooth muscle.  相似文献   

6.
7.
Summary Retinoic acid (RA, 10–5–10–7 M) is shown to enhance the proliferation of cultured rat aortic smooth muscle cells (SMC). This effect is not connected with a synergistic action of RA together with serum mitogens. Moreover, the expression of L1, a surface antigen specific for modulated SMC entering the cell cycle, is amplified by RA treatment.  相似文献   

8.
Summary The effects of serotonin on the formation of inositol phosphates and protein phosphorylation were examined in cultured smooth muscle cells. Serotonin stimulated the formation of [3H]inositol monophosphate, [3H]inositol bisphosphate and [3H]inositol trisphosphate. This effect was prevented by 5-HT2 specific antagonist, 6-methyl-1-(1-methylethyl)ergoline-8-carboxylic acid, 2-hydroxy-1-methylpropyl ester [Z]-2-butenedioate (LY53857). Serotonin stimulated the phosphorylation of many polypeptides, among which a 20 kDa polypeptide was the most prominent. The phosphorylation was also inhibited by LY53857. LY53857 alone produced no effects on protein phosphorylation. The 20 kDa polypeptides were also phosphorylated by the addition of 12-O-tetradecanoylphorbol-13-acetate. These results suggest that serotonin stimulates protein phosphorylation through 5-HT2 receptors and possibly activates protein kinase C in intact vascular smooth muscle cells.Part of the data contained in this paper was presented at the 74th local meeting of the Japanese Society of Pharmacology at Kanagawa.  相似文献   

9.
Summary Dispersal of the constituent cells of mammalian visceral and vascular smooth muscles has permitted recordings both of membrane currents under whole-cell voltage clamp, and of currents through single ionic channels using the patch-clamp technique. A rectangular depolarizing step applied to a single cell under voltage clamp yielded a net inward current followed by a net outward current in normal physiological solution. In isolated, inside-out patches of cell membrane a calcium- and potential-sensitive K channel (100 pS conductance) and a calcium-insensitive, potential-sensitive K+ channel (50 pS conductance) with slow kinetics have so far been identified and characterized.  相似文献   

10.
Summary A calmodulin stimulated Ca2+-transport ATPase which has many of the characteristics of the erythrocyte type Ca2+-transport ATPase has been purified from smooth muscle. In particular, the effect of calmodulin on these transport enzymes is mimiced by partial proteolysis and antibodies against erythrocyte Ca2+-transport ATPase also bind to the smooth muscle (Ca2++Mg2+)ATPase. A correlation between the distribution of the calmodulin stimulated (Ca2++Mg2+)ATPase and (Na++K+)ATPase activities in smooth muscle membranes separated by density gradient centrifugation suggests a plasmalemmal distribution of this (Ca2++Mg2+)ATPase. A phosphoprotein intermediate in smooth muscle which strongly resembles the corresponding phosphoprotein in sarcoplasmic reticulum of skeletal muscle may indicate the presence in smooth muscle of a similar type of Ca2+-transport ATPase.  相似文献   

11.
Summary In smooth muscle the Mr 20,000 light chain of myosin is phosphorylated by a calmodulin-dependent protein kinase. It consists of 2 subunits: calmodulin, an acidic protein of Mr 17,000 that binds 4 moles of Ca2+; and a larger protein of Mr circa 130,000. Activation of the kinase is dependent upon their association in the presence of Ca2+. Cyclic AMP-dependent protein kinase phosphorylation of the myosin light chain kinase occurs at 2 sites. It decreases the affinity of the kinase for calmodulin and a reduction in the rate of light chain phosphorylation occurs. The kinase has an overall asymmetric shape composed of a globular head and tail region for the skeletal muscle enzyme. Trypsin digestion of this kinase releases a fragment of Mr 36,000 from the globular region that contains the catalytic and calmodulin binding sites. Chymotrypsin digestion of the kinase from smooth muscle generates a fragment of Mr 80,000 that does not contain the calmodulin binding or cyclic AMP-dependent protein kinase phosphorylation sites. It is a Ca2+-independent form of the kinase that phosphorylates the light chain of myosin. These structural features indicate a regulatory role for the kinase in smooth muscle phosphorylation and contraction.  相似文献   

12.
Summary Transients in myoplasmic [Ca2+] and in phosphorylation of the 20,000 dalton light chain of myosin have been reported following stimulation of vascular smooth muscle by various agonists. Since these transients are rapid compared with the time required to attain a steady-state stress, agonist diffusion rates may be a significant limitation in activation. The purpose of this study was to estimate the effect of agonist diffusion rates on the time course of activation as assessed by mechanical measurements of stress development and isotonic shortening velocities and by determinations of the time course of myosin phosphorylation. The approach was to measure these parameters in K+-stimulated preparations of the swine carotid media of varying thicknesses and to estimate the theoretical contributions imposed by diffusion rates and the presence of a diffusion boundary layer surrounding the tissue. The results show that the time course of parameters which are tissue averages such as stiffness, active stress, and myosin phosphorylation is dominated by agonist diffusion rates. The sequence of events involved in excitation-contraction coupling including agonist actions on the cell membrane, Ca2+ release, activation of myosin light chain kinase, and cross-bridge phosphorylation appear to be very rapid events compared with stress development. Estimates of unloaded or lightly loaded shortening velocities which are not simple tissue averages appear to provide an imporoved estimate of activation rates.Supported by a grant from the National Institutes of Health 5-PO1-HL19242. K. E. Kamm was supported by a National Heart, Lung, and Blood Institute Research Service Award HL-05957.  相似文献   

13.
14.
Summary Monoclonal antibodies to a surface antigen of the modulated smooth muscle cells originally isolated from the rat aorta media were conjugated with ricin A-chain via an oxidized dextran bridge. The interaction of cultured cells with the conjugates obtained and with control substances was monitored following incorporation of14C-leucine radioactivity. It was found that14C-leucine incorporation was suppressed by 80–90% at a conjugate concentration of 10–6–10–7 M. Antigen-negative cells (line IAR; rat hepatocytes) were insensitive to the conjugate at any concentration used. Control use of purified ricin A-chain, native or oxidized dextran, specific and nonspecific IgG did not affect normal14C-leucine incorporation. The data obtained may be useful for designing targeted drug transport systems and for selective screening of modulated smooth cells in vascular pathology models in vivo.  相似文献   

15.
Muscle fatigue, which is defined as the decline in muscle performance during exercise, may occur at different sites along the pathway from the central nervous system through to the intramuscular contractile machinery. Historically, both impairment of neuromuscular transmission and peripheral alterations within the muscle have been proposed as causative factors of fatigue development. However, according to more recent studies, muscle energetics play a key role in this process. Intramyoplasmic accumulation of inorganic phosphate (Pi) and limitation in ATP availability have been frequently evoked as the main mechanisms leading to fatigue. Although attractive, these hypotheses have been elaborated on the basis of experimental results obtained in vitro, and their physiological relevance has never been clearly demonstrated in vivo. In that context, noninvasive methods such as 31-phosphorus magnetic resonance spectroscopy and surface electromyography have been employed to understand both metabolic and electrical aspects of muscle fatigue under physiological conditions. Mapping of muscles activated during exercise is another interesting issue which can be addressed using magnetic resonance imaging (MRI). Exercise-induced T2 changes have been used in order to locate activated muscles and also as a quantitative index of exercise intensity. The main results related to both issues, i.e. the metabolic and electrical aspects of fatigue and the MRI functional investigation of exercising muscle, are discussed in the present review.Received 4 September 2003; received after revision 4 December 2003; accepted 22 December 2003  相似文献   

16.
Summary The maximal unloaded shortening velocity (Vmax) of smooth muscle cells isolated from the pedal retractor muscle ofMytilus was more than twice as large as that of the whole muscle, suggesting the presence of extracellular components which resist the contraction of the whole muscle. The Vmax of the isolated cells was almost constant at cell lengths ranging between 0.5 and 0.8310 (10, optimal length for tension generation) indicating that the intracellular resistance to contraction is negligible within this range of lengths.  相似文献   

17.
Summary Some smooth muscle relaxant drugs with an unknown mechanism of action have been tested for their interaction with calmodulin and with calmodulin-induced cyclic nucleotide phosphodiesterase (PDE) activity. The affinity of these drugs for calmodulin does not parallel their inhibitory effect on the calmodulin activation of PDE. The lack of parallelism could be due to a binding of the drugs to different sites on calmodulin; furthermore a binding of papaverine, octylonium bromide and felodipine to PDE molecule, might also be considered to explain their inhibitory effect on PDE basal activity. The myolytic effect of octylonium bromide and pinaverium bromide may be due to their interaction with calmodulin-dependent systems.  相似文献   

18.
Summary Colchicine treatment resulted in the appearance and proliferation of smooth sarcoplasmic reticulum in some smooth muscle cells of the aortic and pulmonary trunk walls in the rabbit. The significance of cytoplasmic microtubules and/or membrane-bound tubulin for the morphogenesis, functioning and control of smooth endoplasmic reticulum in different kinds of cells is discussed.  相似文献   

19.
Summary Ciliation in endometrial fibroblasts and myometrial muscle cells of the rat was examined by transmission electron microscopy. Quantification of the number of ciliated cells during the estrus cycle did not show any firm relationship between cilation and ovarian hormonal activity. In the case of most cilia, there is a spatial relationship between their basal centrioles and the Golgi complex, so that a Golgi-cilium complex is created. A possible role of ciliation in uterine fibroblasts and smooth muscle cells is discussed.  相似文献   

20.
We have investigated the reactivity of different human, rat and cat muscles to a monoclonal antibody directed against human -cardiac myosin heavy chain. We have found that special fiber subpopulations of human massetr and extraocular muscles, as well as the bag fibers of human, rat and cat muscle spindles, were reactive to this antibody, indicating that these fibers expressed -cardiac myosin heavy chain or a closely related isoform. This isomyosin was present in the spindle bag fibers at early fetal stages, whereas its expression in masseter and extraocular muscle fibers was not detected during the first 22 weeks of gestation. Our results add to the list of muscle proteins which are expressed in locations or at developmental stages other than those initially described, suggesting that a revision of the present nomenclature of the subgroups of myosin heavy chains might be considered in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号