首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
It has long been known that there are two classes of gamma-ray bursts (GRBs), mainly distinguished by their durations. The breakthrough in our understanding of long-duration GRBs (those lasting more than approximately 2 s), which ultimately linked them with energetic type Ic supernovae, came from the discovery of their long-lived X-ray and optical 'afterglows', when precise and rapid localizations of the sources could finally be obtained. X-ray localizations have recently become available for short (duration <2 s) GRBs, which have evaded optical detection for more than 30 years. Here we report the first discovery of transient optical emission (R-band magnitude approximately 23) associated with a short burst: GRB 050709. The optical afterglow was localized with subarcsecond accuracy, and lies in the outskirts of a blue dwarf galaxy. The optical and X-ray afterglow properties 34 h after the GRB are reminiscent of the afterglows of long GRBs, which are attributable to synchrotron emission from ultrarelativistic ejecta. We did not, however, detect a supernova, as found in most nearby long GRB afterglows, which suggests a different origin for the short GRBs.  相似文献   

2.
Gamma-ray bursts (GRBs) fall into two classes: short-hard and long-soft bursts. The latter are now known to have X-ray and optical afterglows, to occur at cosmological distances in star-forming galaxies, and to be associated with the explosion of massive stars. In contrast, the distance scale, the energy scale and the progenitors of the short bursts have remained a mystery. Here we report the discovery of a short-hard burst whose accurate localization has led to follow-up observations that have identified the X-ray afterglow and (for the first time) the optical afterglow of a short-hard burst; this in turn led to the identification of the host galaxy of the burst as a late-type galaxy at z = 0.16 (ref. 10). These results show that at least some short-hard bursts occur at cosmological distances in the outskirts of galaxies, and are likely to be caused by the merging of compact binaries.  相似文献   

3.
Despite a rich phenomenology, gamma-ray bursts (GRBs) are divided into two classes based on their duration and spectral hardness--the long-soft and the short-hard bursts. The discovery of afterglow emission from long GRBs was a watershed event, pinpointing their origin to star-forming galaxies, and hence the death of massive stars, and indicating an energy release of about 10(51) erg. While theoretical arguments suggest that short GRBs are produced in the coalescence of binary compact objects (neutron stars or black holes), the progenitors, energetics and environments of these events remain elusive despite recent localizations. Here we report the discovery of the first radio afterglow from the short burst GRB 050724, which unambiguously associates it with an elliptical galaxy at a redshift z = 0.257. We show that the burst is powered by the same relativistic fireball mechanism as long GRBs, with the ejecta possibly collimated in jets, but that the total energy release is 10-1,000 times smaller. More importantly, the nature of the host galaxy demonstrates that short GRBs arise from an old (> 1 Gyr) stellar population, strengthening earlier suggestions and providing support for coalescing compact object binaries as the progenitors.  相似文献   

4.
The association of a supernova with GRB030329 strongly supports the 'collapsar' model of gamma-ray bursts, where a relativistic jet forms after the progenitor star collapses. Such jets cannot be spatially resolved because gamma-ray bursts lie at cosmological distances; their existence is instead inferred from 'breaks' in the light curves of the afterglows, and from the theoretical desire to reduce the estimated total energy of the burst by proposing that most of it comes out in narrow beams. Temporal evolution of the polarization of the afterglows may provide independent evidence for the jet structure of the relativistic outflow. Small-level polarization ( approximately 1-3 per cent) has been reported for a few bursts, but its temporal evolution has yet to be established. Here we report polarimetric observations of the afterglow of GRB030329. We establish the polarization light curve, detect sustained polarization at the per cent level, and find significant variability. The data imply that the afterglow magnetic field has a small coherence length and is mostly random, probably generated by turbulence, in contrast with the picture arising from the high polarization detected in the prompt gamma-rays from GRB021206 (ref. 18).  相似文献   

5.
'Long' gamma-ray bursts (GRBs) are commonly accepted to originate in the explosion of particularly massive stars, which give rise to highly relativistic jets. Inhomogeneities in the expanding flow result in internal shock waves that are believed to produce the gamma-rays we see. As the jet travels further outward into the surrounding circumstellar medium, 'external' shocks create the afterglow emission seen in the X-ray, optical and radio bands. Here we report observations of the early phases of the X-ray emission of five GRBs. Their X-ray light curves are characterised by a surprisingly rapid fall-off for the first few hundred seconds, followed by a less rapid decline lasting several hours. This steep decline, together with detailed spectral properties of two particular bursts, shows that violent shock interactions take place in the early jet outflows.  相似文献   

6.
The taxonomy of optical emission detected during the critical first few minutes after the onset of a gamma-ray burst (GRB) defines two broad classes: prompt optical emission correlated with prompt gamma-ray emission, and early optical afterglow emission uncorrelated with the gamma-ray emission. The standard theoretical interpretation attributes prompt emission to internal shocks in the ultra-relativistic outflow generated by the internal engine; early afterglow emission is attributed to shocks generated by interaction with the surrounding medium. Here we report on observations of a bright GRB that, for the first time, clearly show the temporal relationship and relative strength of the two optical components. The observations indicate that early afterglow emission can be understood as reverberation of the energy input measured by prompt emission. Measurements of the early afterglow reverberations therefore probe the structure of the environment around the burst, whereas the subsequent response to late-time impulsive energy releases reveals how earlier flaring episodes have altered the jet and environment parameters. Many GRBs are generated by the death of massive stars that were born and died before the Universe was ten per cent of its current age, so GRB afterglow reverberations provide clues about the environments around some of the first stars.  相似文献   

7.
考虑同步自吸收效应后,讨论了Gamma射线暴余辉的谱并展示了Gamma射线暴GRB970508余辉在光学波段的光变曲线,尽管光学余辉很复杂,所得到的结果仍然与观测结果符合的很好,因此不管是在火球+激波模型还是在喷流模型中,都应该全面地研究同步自吸收效应和内部能源机制,以使理论计算更好的拟合观测到的光变曲线。  相似文献   

8.
Over the six years since the discovery of the gamma-ray burst GRB 980425, which was associated with the nearby (distance approximately 40 Mpc) supernova 1998bw, astronomers have debated fiercely the nature of this event. Relative to bursts located at cosmological distance (redshift z approximately 1), GRB 980425 was under-luminous in gamma-rays by three orders of magnitude. Radio calorimetry showed that the explosion was sub-energetic by a factor of 10. Here we report observations of the radio and X-ray afterglow of the recent GRB 031203 (refs 5-7), which has a redshift of z = 0.105. We demonstrate that it too is sub-energetic which, when taken together with the low gamma-ray luminosity, suggests that GRB 031203 is the first cosmic analogue to GRB 980425. We find no evidence that this event was a highly collimated explosion viewed off-axis. Like GRB 980425, GRB 031203 appears to be an intrinsically sub-energetic gamma-ray burst. Such sub-energetic events have faint afterglows. We expect intensive follow-up of faint bursts with smooth gamma-ray light curves (common to both GRB 031203 and 980425) to reveal a large population of such events.  相似文献   

9.
以前的研究表明:在伽玛射线暴(简称伽玛暴)间各向同性等值光度Liso和静止系中vFv谱的峰值能量E′p之间存在关系式LisooE′p2.Liang等人用Preece等人给出的91个BATSE伽玛暴的2408个时间分辨谱样本对这一关系式进行了验证,得出这一关系式不但在伽玛暴内成立,而且在伽玛暴之间也是成立的.为了进一步验证这一关系式,我们收集了Kaneko等人2006年发表的350个BATSE伽玛暴能谱的数据,并对其中185个伽玛暴能谱的5218个时间分辨谱样本进行统计分析,我们得出的结果与Liang等人的结果是一致的.  相似文献   

10.
Long-duration gamma-ray bursts (GRBs) release copious amounts of energy across the entire electromagnetic spectrum, and so provide a window into the process of black hole formation from the collapse of massive stars. Previous early optical observations of even the most exceptional GRBs (990123 and 030329) lacked both the temporal resolution to probe the optical flash in detail and the accuracy needed to trace the transition from the prompt emission within the outflow to external shocks caused by interaction with the progenitor environment. Here we report observations of the extraordinarily bright prompt optical and gamma-ray emission of GRB 080319B that provide diagnostics within seconds of its formation, followed by broadband observations of the afterglow decay that continued for weeks. We show that the prompt emission stems from a single physical region, implying an extremely relativistic outflow that propagates within the narrow inner core of a two-component jet.  相似文献   

11.
Past studies of cosmological gamma-ray bursts (GRBs) have been hampered by their extreme distances, resulting in faint afterglows. A nearby GRB could potentially shed much light on the origin of these events, but GRBs with a redshift z 相似文献   

12.
Now that gamma-ray bursts (GRBs) have been determined to lie at cosmological distances, their isotropic burst energies are estimated to be as high as 1054 erg (ref. 2), making them the most energetic phenomena in the Universe. The nature of the progenitors responsible for the bursts remains, however, elusive. The favoured models range from the merger of two neutron stars in a binary system to the collapse of a massive star. Spectroscopic studies of the afterglow emission could reveal details of the environment of the burst, by indicating the elements present, the speed of the outflow and an estimate of the temperature. Here we report an X-ray spectrum of the afterglow of GRB011211, which shows emission lines of magnesium, silicon, sulphur, argon, calcium and possibly nickel, arising in metal-enriched material with an outflow velocity of the order of one-tenth the speed of light. These observations strongly favour models where a supernova explosion from a massive stellar progenitor precedes the burst event and is responsible for the outflowing matter.  相似文献   

13.
The prompt optical emission that arrives with the gamma-rays from a cosmic gamma-ray burst (GRB) is a signature of the engine powering the burst, the properties of the ultra-relativistic ejecta of the explosion, and the ejecta's interactions with the surroundings. Until now, only GRB 990123 had been detected at optical wavelengths during the burst phase. Its prompt optical emission was variable and uncorrelated with the prompt gamma-ray emission, suggesting that the optical emission was generated by a reverse shock arising from the ejecta's collision with surrounding material. Here we report prompt optical emission from GRB 041219a. It is variable and correlated with the prompt gamma-rays, indicating a common origin for the optical light and the gamma-rays. Within the context of the standard fireball model of GRBs, we attribute this new optical component to internal shocks driven into the burst ejecta by variations of the inner engine. The correlated optical emission is a direct probe of the jet isolated from the medium. The timing of the uncorrelated optical emission is strongly dependent on the nature of the medium.  相似文献   

14.
研究了幂律分布电子的同步曲率辐射在伽玛暴(gamma-ray burst,GRB)的物理条件下的表现,并用同步曲率辐射机制代替同步辐射来解释伽玛暴的瞬时谱,尤其是那些出现拐点和高能过剩的谱,还拟合了几个实际的有拐点和高能过剩的伽玛射线暴的瞬时谱.从中可以看出,同步曲率辐射机制对整个瞬时谱能够做出统一和合理的解释.在对高能过剩部分的解释中,同步曲率辐射机制不需再人为引入任何其他机制,因此可调参数少.此外,该机制还能对发射区磁场给出更加详细的描述,尤其是对磁场的曲率半径有了严格的约束,因此对磁场的形成机制给出严格的限制,支持了磁场产生于激波的理论模型.将来对更高能部分的更精细的观测将能够对我们的模型进行进一步检验.最后用同步曲率辐射对GRB 941017的谱的瞬时谱部分的演化进行了拟合和讨论.  相似文献   

15.
When massive stars exhaust their fuel, they collapse and often produce the extraordinarily bright explosions known as core-collapse supernovae. On occasion, this stellar collapse also powers an even more brilliant relativistic explosion known as a long-duration gamma-ray burst. One would then expect that these long gamma-ray bursts and core-collapse supernovae should be found in similar galactic environments. Here we show that this expectation is wrong. We find that the gamma-ray bursts are far more concentrated in the very brightest regions of their host galaxies than are the core-collapse supernovae. Furthermore, the host galaxies of the long gamma-ray bursts are significantly fainter and more irregular than the hosts of the core-collapse supernovae. Together these results suggest that long-duration gamma-ray bursts are associated with the most extremely massive stars and may be restricted to galaxies of limited chemical evolution. Our results directly imply that long gamma-ray bursts are relatively rare in galaxies such as our own Milky Way.  相似文献   

16.
利用卡方检验的方法对SWIFT仪器观测的438个暴样本(其中143个暴有红移)的T90分布进行统计检验,找寻是否存在第三个子类暴.研究表明,在观测系的T90分布没有发现有第三个子类暴,但暴源的T90却存在第三个子类暴.  相似文献   

17.
Over the past decade, our physical understanding of gamma-ray bursts (GRBs) has progressed rapidly, thanks to the discovery and observation of their long-lived afterglow emission. Long-duration (> 2 s) GRBs are associated with the explosive deaths of massive stars ('collapsars', ref. 1), which produce accompanying supernovae; the short-duration (< or = 2 s) GRBs have a different origin, which has been argued to be the merger of two compact objects. Here we report optical observations of GRB 060614 (duration approximately 100 s, ref. 10) that rule out the presence of an associated supernova. This would seem to require a new explosive process: either a massive collapsar that powers a GRB without any associated supernova, or a new type of 'engine', as long-lived as the collapsar but without a massive star. We also show that the properties of the host galaxy (redshift z = 0.125) distinguish it from other long-duration GRB hosts and suggest that an entirely new type of GRB progenitor may be required.  相似文献   

18.
伽玛暴余辉的双拐折行为可以用双喷流成份结构模型得到较好的解释,但至今其物理参数还未解。为给出其相应的物理参数,文中将对具有双喷流成份的伽玛暴光学余辉进行统计分析,用外激波模型时域指数α和频域指数β的关系(closure relation)对数据进行限制,得到GRB 071003,GRB 080319B,GRB 090426和GRB 100219A共4个具有外激波模型的伽玛暴双成份喷流特征。这些伽玛暴第一个喷流成份的张角都在1°以内,而第二个喷流成份的张角增大到2°~7°,与单成份喷流的张角一致。其各向同性辐射能量在1051~1054erg,电子谱指数p约为2,比典型值2.3硬。长暴能较好符合Amati关系。  相似文献   

19.
Tanvir NR  Chapman R  Levan AJ  Priddey RS 《Nature》2005,438(7070):991-993
Gamma-ray bursts (GRBs) divide into two classes: 'long', which typically have initial durations of T90 > 2 s, and 'short', with durations of T90 < 2 s (where T90 is the time to detect 90% of the observed fluence). Long bursts, which on average have softer gamma-ray spectra, are known to be associated with stellar core-collapse events-in some cases simultaneously producing powerful type Ic supernovae. In contrast, the origin of short bursts has remained mysterious until recently. A subsecond intense 'spike' of gamma-rays during a giant flare from the Galactic soft gamma-ray repeater, SGR 1806-20, reopened an old debate over whether some short GRBs could be similar events seen in galaxies out to approximately 70 Mpc (refs 6-10; redshift z approximately 0.016). Shortly after that, localizations of a few short GRBs (with optical afterglows detected in two cases) have shown an apparent association with a variety of host galaxies at moderate redshifts. Here we report a correlation between the locations of previously observed short bursts and the positions of galaxies in the local Universe, indicating that between 10 and 25 per cent of short GRBs originate at low redshifts (z < 0.025).  相似文献   

20.
Gamma-ray bursts (GRBs) are energetic explosions that for 0.01-100 s are the brightest gamma-ray sources in the sky. Observations of the early evolution of afterglows are expected to provide clues about the nature of the bursts, but their rapid fading has hampered such studies; some recent rapid localizations of bursts have improved the situation. Here we report an early detection of the very bright afterglow of the burst of 29 March 2003 (GRB030329). Our data show that, even early in the afterglow phase, the light curve shows unexpectedly complicated structures superimposed on the fading background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号