首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mo添加对金属Ru电催化氧还原性能的影响   总被引:1,自引:1,他引:0  
以Ru3(CO)12和Mo(CO)6为前驱体,在1,6-己二醇介质中采用低温回流法合成了Ru-Mo催化剂。利用SEM、XRD和旋转圆盘电极(RDE)技术表征了催化剂的物理特征和催化性能。Ru-Mo催化剂呈现以六方结构Rux簇为主相的纳米颗粒特征,同时形成无定形相,聚集颗粒高度分散。在氧气饱和的0.5 mol/L H2SO4溶液中,Ru-Mo催化剂对氧还原的电催化活性和稳定性明显高于Rux簇合物,开路电位为0.91 V(vs.NHE)。  相似文献   

2.
Zinc-air batteries (ZABs) have the advantages of high energy density and safety but their large-scale application is hindered by sluggish kinetics of four-electron aqueous O2 redox reactions. Widely used Ruthenium (Ru)-based catalysts possess intrinsic oxygen evolution catalytic activity but suffer from insufficient oxygen reduction reaction (ORR) performance. Herein, to optimize the ORR activity of Ru-based catalyst, an iron (Fe)-coordinated, bimetallic RuFe cluster is constructed and homogeneously dispersed within nitrogen (N)-doped carbon layers (denoted as RuFe@NC). Benefitting from the optimized ORR activity and more active site exposure, the RuFe@NC exhibits superior ORR activity with a half wave potential (E1/2) of 0.88 ?V higher than that of Pt/C (0.82 ?V). Accordingly, the RuFe@NC-based ZAB outperforms the Pt/C ?+ ?IrO2-based device, presenting a reduced polarization of 0.7 ?V and an enhanced cycling lifetime of 50 ?h at 10 ?mA ?cm?2. Moreover, the optimized structural design ultralow Ru loading (0.013 mgRu cm?2) overcomes the cost barriers and demonstrates its high practicality. This bimetallic RuFe nanocluster opens a new way for future design of more efficient and stable catalytic systems.  相似文献   

3.
Designing highly active and durable oxygen reduction reaction (ORR) electrocatalysts is essential for developing efficient proton-exchange membrane fuel cells (PEMFCs). In this work, ordered PtCuNi/C nanoparticles (NPs) were synthesized using an impregnation reduction method. This study shows that the incorporation of Ni in ordered PtCu/C can effectively adjust the electronic structure of Pt, thereby optimizing oxygen binding energy for the ORR. The obtained intermetallic ordered PtCuNi/C NPs significantly improved ORR activity and durability compared to ordered PtCu/C. Specifically, PtCu0·5Ni0·5/C-700 shows a mass activity of 1.29 ​A ​mg Pt−1 ​at 0.9 ​V vs. reversible hydrogen electrode (RHE), which is about 9.2 times higher than that of commercial Pt/C. PtCu0.5Ni0.5/C-700 is also shown to be competent cathode catalyst for a single-cell system exhibiting high power density (461 ​mW ​cm−2). This work demonstrates that ordered PtCu0·5Ni0·5/C-700 can be used as a highly active and durable ORR catalyst in PEMFCs.  相似文献   

4.
Metal and nitrogen-doped carbon (M-N-C) materials have been considered as the most promising non-precious metal oxygen reduction (ORR) catalysts to replace expensive Pt catalysts. Due to high Fenton catalytic activity of Fe element and the resulting instability, Co-based N–C (Co–N–C) catalysts without Fenton catalytic activity should be a worthier ORR catalyst being explored. Although the high ORR activity of Co–N–C catalyst has been demonstrated in aqueous half-cell tests, their performance under PEMFC working condition is still far away from that of state-of-the-art Fe–N–C catalysts. In this study, a high-performance Co–N–C catalyst was synthesized by one-step pyrolyzing Co-doped ZIF-8 (zeolitic imidazolate framework-8) particles in-situ grown on the high-surface-area KJ600 carbon black with high electronic conductivity. The resulting Co–N–C catalyst exhibited high intrinsic ORR activity, fast mass transfer rate and high electronic conductivity, and thus yielded a remarkable peak power density of 0.92 W cm-2 in H2–O2 PEMFC, which is comparable to state-of-the-art Fe–N–C catalyst. This strategy is helpful to synthesize highly active M-N-C ORR catalysts with improved mass transfer and electric conductivity.  相似文献   

5.
The leaching of cobalt from four-mixed Co-Cu oxidized ores containing cobalt at levels ranging from 0.5wt% to 34wt% was studied and the results has been reported. Conventional dissolution of these oxidized Co-Cu ores with diluted H2SO4 and SO2 as a reducing agent resulted in a substantial improvement in the solution based recovery of cobalt. UV/visible spectroscopic analysis of the leached solutions indicated that the increased cobalt content in the solution was a result of flushing the acidified cobalt leaching solution with SO2. Furthermore, UV/visible spectroscopy confirmed that as SO2 was flushed into the acidified leaching solution, Co3+ bearing minerals were reduced to the readily soluble Co2+ bearing minerals, and this resulted in the increase of total cobalt in the collected solution. The mechanism of the reduction of Co3+ to Co2+ bearing minerals when SO2 is flushed during the leaching of mixed Co-Cu oxidized ores, including the stability trends of Co3+, Co2+, and Cu2+ complexes, as shown by their UV/visible spectra, are also discussed.  相似文献   

6.
A cost-effective electrocatalyst with high activity and stability was developed. The Fe-Nx and pyridinic-N active sites were embedded in nitrogen-doped mesoporous carbon nanomaterial by carbonization at high temperature. The electrocatalyst exhibited excellent electrochemical performance for the oxygen reduction reaction, with high onset potential and half-wave potential values (Eonset = 1.10 ?V and E1/2 ?= ?0.944 ?V) than 20 ?wt % Pt/C catalyst (1.04 and 0.910 ?V). The mass activity of the Schiff base network (SNW) based SNW-Fe/N/C@800° electrocatalyst (0.64 ?mA ?mg?1 @ 1 ?V) reached about half of the commercial Pt/C electrocatalyst (1.35 ?mA ?mg?1 @ 1 ?V). The electrocatalyst followed the 4-electron transfer mechanism due to very low hydrogen peroxide yield (H2O2 ?< ?1.5%) was obtained. In addition, this electrocatalyst with dual active sites showed high stability during cyclic voltammetry and chronoamperometry measurements. More importantly, the electrocatalyst also demonstrated the power density of 266 ?mW ?cm?2 in the alkaline anions exchange membrane fuel cell (AEMFC) test, indicating its prospective application for fuel cells.  相似文献   

7.
Se-modified ruthenium supporting on carbon(Sex–Ru/C) electrocatalyst was prepared by solvothermal one-step synthesis method. The reaction mechanism was revealed after discussing impact of different solvents(i-propanol and EG) in solvotermal reaction. The result showed that the grain size of Se-modified ruthenium electrocatalyst was as small as 1 to 3 nm and highly dispersed on carbon surface. X-ray photoelectron spectroscopy(XPS) presented that selenium mainly existed in the catalyst in the form of elemental selenium and selenium oxides when the solvent was EG and i-propanol, respectively. The oxygen reduction reaction(ORR) performance was improved by appearance of selenium oxides.  相似文献   

8.
Sheet-like carbon-nitrogen (CNx)/graphene composites with a high content of nitrogen (x≤0.15) was prepared by the carbonization of polypyrrole (PPy)/reduced-graphene-oxide (rGO) composite at 600-800°C. We used rGO instead of graphene oxide (GO) sheets as a template and a substrate to immobilize PPy since the PPy/GO composite agglomerates easily because of the dehydration of excess oxygen-containing groups on the GO sheets during the drying process. The dried PPy/rGO intermediate and its derived CNx/graphene products retain their high dispersion and loose-powder features. The as-prepared CNx/graphene composites have a total nitrogen content of about 10 at% and their nitrogen state is mainly of pyridinic and graphitic type. CNx/graphene composites exhibit excellent performance for the oxygen reduction reaction (ORR) in terms of electrocatalytic activity, stability and immunity towards methanol crossover and CO poisoning, suggesting their potential as metal-free electrocatalysts for the ORR.  相似文献   

9.
It is of great significance in exploring alternative catalysts to platinum (Pt)-based materials for oxygen reduction reaction (ORR),because this reaction is invariably involved in various fuel cells and metal-air batteries.We herein reported the nitrogen doped graphene nanosheets (NGNSs) with pore volume of as high as 3.42 m 3 /g and investigated their potential application as ORR catalysts,it was demonstrated the NGNSs featured high activity,improved kinetics and excellent long-term stability for ORR.The NGNSs were successfully used as cathode catalysts of microbial fuel cells (MFCs) and performed even better than the commercial Pt/C (Pt 10%) catalysts at the maximum power output.  相似文献   

10.
采用水热法合成碳钛复合材料,以碳钛复合材料为载体制备了钴基费-托合成催化剂.采用氮气物理吸附-脱附、原位X射线衍射(XRD)、透射电子显微镜(TEM)、氢气程序升温还原(H2-TPR)、X射线光电子能谱(XPS)等对催化剂进行了表征,在固定床反应器上对催化剂的费-托合成催化性能进行了评价.结果表明:利用碳改性二氧化钛可明显影响催化剂的催化活性,由于碳的引入导致催化剂更易于还原,催化剂的分散较好,具有更高的费-托合成活性和重质烃选择性(C5+).  相似文献   

11.
采用搅拌反应法制备了ZnCo(ZIF)与氧化石墨(graphite oxide,GO)的复合材料,热处理得到Co@N-doped rGO催化剂。通过X射线衍射(X-ray diffraction,XRD)和扫描电子显微镜(scanning electron microscopy,SEM)对催化剂进行结构表征,通过X射线光电子能谱(X-ray photoelectron spectroscopy,XPS)对催化剂进行表面元素分析,分别考察了金属(Zn和Co)加入量和热处理温度对催化剂氧气还原反应(oxygen reduction reaction,ORR)催化性能的影响,结果表明:所制备的催化剂整体呈层状分布,表面附着金属小颗粒团簇;随着金属加入量的增加,催化剂的ORR催化性能先增强后减弱;随着热处理温度的升高,催化剂的ORR催化性能先增强后减弱。所制备的S-2-850催化剂具有最好的ORR催化性能,在0.1 mol/L KOH电解液中,其起始电位和半波电位分别为0.871 V和0.804 V,在相同测试条件下活性稳定性优于20% Pt/C。  相似文献   

12.
通过热解聚苯胺涂层的Mn Co2O4颗粒制备出Mn Co2O4/N-C材料,即一种新型的碱性聚合物电解质膜燃料电池(APEFC)阴极非贵金属催化剂。在不同温度下热处理得到了一系列的Mn Co2O4/N-C催化剂,对其进行XRD、Raman、XPS表征和LSV电化学测试,结果表明:热处理温度为900℃,Mn Co2O4质量分数为15%时,Mn Co2O4/N-C催化剂具有最佳的催化活性,氧还原反应起始电位为0.90 V;该催化剂中石墨型的碳和氮含量最高,这是其具有较高的氧还原催化活性一个重要因素。  相似文献   

13.
FeCo-based non-noble metal electrocatalysts (NNMEs) of FeCo/MCS-NPCS was fabricated by immobilization of hemin on mesoporous carbon shells modified N-doped porous carbon spheres (MCS-NPCS). The obtained FeCo/MCS-NPCS exhibits a half-wave potential (E1/2) of 0.851 ​V versus the reversible hydrogen electrode (vs. RHE) and a limited-diffusion current density (JL) of 5.45 ​mA ​cm−2. In addition, FeCo/MCS-NPCS shows comparable oxygen reduction reaction (ORR) performances to 20 ​wt% Pt/C in terms of E1/2 and JL and better electrochemical properties, including the methanol tolerance and durability in alkaline solution. Such outstanding electrochemical activities of FeCo/MCS-NPCS can be ascribed to Fe and/or Co-based nitrides and carbides as well as N-doped carbon matrixes modified with mesoporous carbon shells. This research introduces a promising path to design and synthesize highly efficient FeCo–N–C electrocatalysts towards ORR.  相似文献   

14.
It is highly desired but challenging to develop platinum group metal-free electrocatalysts for oxygen reduction reaction (ORR), which can promote the commercialization of fuel cell technology. To achieve this target, we report a one-step doping method to prepare S-doped Fe–N–C catalysts using zeolite imidazole framework (ZIF-8) and iron (III) thiocyanate (Fe(SCN)3) as precursor. Different from conventional doping approach, i.e. physical mixing, Fe(SCN)3 is in-situ added during ZIF-8 formation which would encapsulate Fe(SCN)3 molecules inside ZIF-8 to avoid structure destruction and create potential replacement of Zn ions by Fe ions to form uniform Fe–N4 complexes. As a result, the prepared S-doped Fe–N–C catalysts own large specific surface areas with a maximum value of 1326 ​m2 ​g−1 and a dual-scale porous structure that benefits mass transport. Significantly, the composition-optimized catalyst exhibits superior ORR activity in both 0.1 ​M HClO4 electrolyte and 0.1 ​M KOH electrolyte, in which the half-wave potential reaches 0.81 ​V and 0.92 ​V (vs. RHE), respectively. Remarkable stability is also attained, which loses 2 ​mV only after 10000 potential cycles in O2-saturated 0.1 ​M HClO4 and remains almost constant in O2-saturated 0.1 ​M KOH, surpassing commercial Pt/C catalyst in both acidic and alkaline medium.  相似文献   

15.
Design and synthesis of highly active and durable electrocatalysts toward oxygen reduction reaction (ORR) is of particular importance for proton exchange membrane fuel cells (PEMFCs), yet remains a grand challenge. Herein, we report the deposition of iron (III) porphyrin (FeP) on house-made Pt/C by rotary evaporation of the mixture of FeP and house-made Pt/C dispersed in chloroform, followed by pyrolysis at 650 °C in argon atmosphere. This approach led to the synthesis of new non-precious metal electrocatalyst (NPME)-Pt/C composites (Pt/C–FeP) with an average nanoparticle diameter of 3.1 ± 1.5 nm without aggregation. According to X-ray photoelectron spectroscopy (XPS), the binding energy of Pt 4f7/2 became larger due to the presence of pyrolyzed FeP. In addition, the electrochemically active surface area (ECSA) of Pt/C–FeP-650 is 65 m2/g less than that of house-made Pt/C (80.2 m2/g). This implies that the pyrolyzed FeP may have partially covered the surface of Pt nanoparticles and thus lowering the ECSA. Interestingly, the mass activity (MA) of Pt/C–FeP turns out to be 349.0 mA/mgPt @0.9 V vs. RHE, which is 2.6 times and 1.5 times of house-made Pt/C and commercial Pt/C, respectively. It is speculated that the electronic interaction and possible synergy between Pt and pyrolyzed FeP as NPME might have contributed to the ORR activity improvement despite of partial loss of ECSA. During accelerated durability tests (ADTs), the MA of Pt/C–FeP-650 degrades 64.3% inferior to commercial Pt/C (52.2%). The main reason likely arises from the degradation of pyrolyzed FeP, which is a bottleneck problem confronting NPMEs.  相似文献   

16.
微结构对纳米碳纤维氧阴极还原性能影响   总被引:1,自引:0,他引:1  
在制备微结构可控纳米碳纤维基础上,研究纳米碳纤维微结构对氧气电催化还原反应(oxygen reduction reaction,ORR)性能的影响.利用化学还原法合成了Pt电催化剂,研究了纳米碳纤维微结构对Pt/CNFs电催化剂电催化性能的影响.研究发现,相对于基于活性炭的电催化剂,载于纳米碳纤维的电催化剂具有较高的ORR活性;同时,基于板式纳米碳纤维的电催化剂表现出最高的ORR活性.  相似文献   

17.
燃料电池是一种环境友好、转换效率高、能量密度高的能量转换装置,可将化学能直接转换为电能。但目前应用于阴极氧还原(oxygen reduction reaction, ORR)的铂基催化剂价格昂贵、资源稀缺、抗甲醇能力低的缺点限制了它的应用。基于此,以生物质材料壳聚糖为前驱体,通过水热法将壳聚糖包覆到分层多孔氮掺杂碳骨架(hierarchically porous nitrogen-doped carbon, HPC)上,经高温处理得到了高效的铁掺杂壳聚糖包覆HPC催化剂(Fe-HPC@CTS)。研究结果表明:壳聚糖已包覆到HPC上,有效的提升了催化剂的比表面积;壳聚糖包覆HPC,一方面增加了催化剂中的活性位点,另一方面HPC提供了导电性好、比表面积大的基底,从而使得催化剂拥有一个良好的电子传输通道以及暴露更多的活性位点,从而使催化剂的ORR性能有明显的提升;该催化剂在碱性条件下ORR半波电位为0.80 V,极限电流密度为6.50 mA·cm-2。通过抗甲醇性能测试,该催化剂的抗甲醇性能要优于20% Pt/C催化剂。  相似文献   

18.
用循环伏安方法制备了二氧化锰/多壁碳纳米管(MnO2/MwCNTs)复合材料,分别在中性和弱碱性的硫酸钠溶液中对其进行氧还原电化学测试。结果显示,在合适条件下,MnO2/MwCNTs复合材料的电催化还原氧气的电流值明显大于单独MWCNTs和单独MnO2电催化还原电流值,说明MnO2/MWCNTs复合材料具有良好的催化还原活性;在弱碱性的环境下,随着碱性的增强,MnO2/MWCNTs复合材料的电催化还原活性逐渐增强,同时显示出稳定的电催化还原~活性。  相似文献   

19.
Aiming to find suitable electrolytes for electric double layer capacitor (EDLC),the relationship between the formation velocity of electric double layer and the specific capacitance in different electrolyte (H 2 SO 4,KOH,KCl,NH 4 Cl,and LiOH) solutions was investigated by cyclic voltammetry and AC impedance with varying frequency and potential,which was also analyzed based on Stern model and Gouy-Chapman diffusion layer model.It shows that the capacitance is positively correlated with the formation velocity of the electric double layers,which is affected by the type of ions applied,the concentration of the electrolyte solution,and the potential and frequencies as well.The electrolyte solutions of 6 mol/L KOH and 4 mol/L H 2 SO 4 provide the largest capacitance,reaching 214 and 186 μF/cm 2,respectively.Both 6 mol/L KOH and 4 mol/L H 2 SO 4 solutions are suitable electrolytes for EDLC applications using Pt as electrodes.  相似文献   

20.
There is a growing interest in designing more effective fuel cell cathode catalyst precursors.Here the partial pyrolysis of animal bloods has been used to produce the blood pyropolymers,which are an intermediate substance between a polymer and carbonaceous material.These pyropolymers were yielded by carbonization process below 600°C.The structural changes in the pyropolymers were characterized by X-ray diffraction,and their formation was checked by micro-IR spectra,thermogravimetric and differential thermal analysis.Their potential electrocatalytic properties were evaluated using the linear sweep voltammetry in the O2-saturated KOH solution.It is found that the process of pyropolymer formation began about 200°C and completed around500°C.The change of particle phase depends on the formation of the pyropolymers,but has no effect to their internal carbon structures which are controlled by pyrolysis process only.Meanwhile,it is confirmed that the crystalline phases in the pyropolymers can exist at the surface of heat-treated materials.It can be also found that the carbon materials are active toward oxygen reduction and their activity is associated with the carbonization level.Our study will stimulate the designers to design the highly active catalysts by using native blood pyropolymers as the precursors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号