首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
利用活性炭纤维毡(ACF)对三聚氰酸进行了静态吸附和电脱附,通过透射电子显微镜(TEM)、场发射扫描电子显微镜(SEM)对ACF微观结构进行了表征,并通过高效液相色谱(HPLC)检测了三聚氰酸含量.研究了吸附平衡时间、pH等对静态吸附的影响,以及电解质浓度和脱附时间对电脱附率的影响.结果表明:ACF对三聚氰酸的吸附遵循准二级吸附动力学,符合Langmuir和Freundlich等温吸附模型,酸性环境能促进对三聚氰酸的吸附,pH=12时发生脱附再生,用ACF电脱附三聚氰酸最佳脱附时间15min时脱附率可达92.5%.  相似文献   

2.
利用活性炭纤维毡(ACF)对三聚氰酸进行了静态吸附和电脱附,通过透射电子显微镜(TEM)、场发射扫描电子显微镜(SEM)对ACF微观结构进行了表征,并通过高效液相色谱(HPLC)检测了三聚氰酸含量.研究了吸附平衡时间、pH等对静态吸附的影响,以及电解质浓度和脱附时间对电脱附率的影响.结果表明:ACF对三聚氰酸的吸附遵循准二级吸附动力学,符合Langmuir和Freundlich等温吸附模型,酸性环境能促进对三聚氰酸的吸附,pH=12时发生脱附再生,用ACF电脱附三聚氰酸最佳脱附时间15min时脱附率可达92.5%.  相似文献   

3.
交联壳聚糖处理电镀废水中铬(Ⅵ)的研究   总被引:1,自引:0,他引:1  
以天然高分子化合物壳聚糖为原料,在碱性条件下用环氧氯丙烷对壳聚糖进行化学改性,制备得水不溶的交联壳聚糖(CCTS),采用静态法研究交联壳聚糖对废水中Cr(Ⅵ)的吸附行性能.实验结果表明交联壳聚糖对Cr(Ⅵ)具有很好的吸附性能,吸附的最佳条件是:pH值3-4,吸附时间为80min.使用CCTS处理电镀废水中的Cr(Ⅵ),离子吸附率达到了96%,而且吸附后的CCTS可以再生使用.  相似文献   

4.
磺化煤吸附铬(Ⅵ)的热力学研究   总被引:2,自引:0,他引:2  
在静态条件下,研究了水溶液中磺化煤吸附铬(Ⅵ)的热力学特性,研究了含铬废水的pH、浓度和接触时间等因素对磺化煤吸附、还原Cr(Ⅵ)的影响,测定了不同温度下的吸附等温线.结果表明:在稀溶液中吸附铬(Ⅵ)基本符合Langmuir模型;由于磺化褐煤的微孔结构和表面存在含氧官能团的吸附中心,磺化煤吸附铬(Ⅵ)主要以HCrO4-形式被吸附,导致了水分子的脱附及H 离子的产生,从而使热力学函数△S0增加.图4,表3,参11.  相似文献   

5.
以廉价易得的农林废弃物花生壳(PE)为载体,负载对重金属Cr(Ⅵ)具有强吸附亲和性的纳米活性组分聚乙烯亚胺(PEI),制备一种新型纳米复合吸附剂PEI-PE。通过序批式吸附实验探究了PEI-PE对水中Cr(Ⅵ)的吸附性能,用动态柱吸附实验研究PEI-PE的实际应用潜力。结果表明:PEI-PE对Cr(Ⅵ)的吸附在300 min即可达到平衡,PEI-PE吸附Cr(Ⅵ)的过程符合Langmuir等温吸附模型和准二级动力学模型,属于单分子层化学吸附。在pH=3时,最大吸附量可达32 mg/g。在2种竞争离子Cl-、SO42-存在的条件下,PEI-PE依然表现出较高的吸附量。2 g的PEI-PE可将850 mL初始质量浓度为5 mg/L的含Cr(Ⅵ)废水处理后达到工业废水排放标准(0.5 mg/L),且吸附后的PEI-PE具有一定的脱附再生能力,可实现吸附剂的循环利用。  相似文献   

6.
通过静态吸附和动态吸附实验,测定吸附等温线和动态吸附穿透曲线,研究活性炭纤维(ACF)对Fe3+的吸附特性,并利用外加电场和辅助再生剂对ACF进行再生处理,考察再生电压、辅助再生剂用量、电解质浓度对再生率的影响,初步探讨再生机理,最后通过扫描电镜,观察再生前后ACF的表面形貌。结果表明:在研究范围内,ACF对Fe3+的吸附更接近Langmuir吸附模型;动态吸附实验中,当流速为10 mL/min时,最有利于出水达标;在最佳再生条件下:再生电压1 100 mV,辅助再生剂柠檬酸4.8%(质量分数),电解质硫酸钠浓度0.7 mmol/L,再生时间2 h,ACF可获得较好再生效果,其再生率为84.2%;再生电压、辅助再生剂用量以及电解质浓度对再生率的影响都非常明显。  相似文献   

7.
印迹与交联壳聚糖吸附水中微量Cr(VI)的对比试验研究   总被引:1,自引:0,他引:1  
本研究以壳聚糖为原料,戊二醛为交联剂,分别采用直接交联的方法和分子印迹技术制备交联壳聚糖和Cr(Ⅵ)印迹壳聚糖,并对这两种吸附剂对Cr(Ⅵ)的吸附性能进行了研究,考察了pH、反应时间、吸附剂投加量、Cr(Ⅵ)初始浓度、温度对Cr(Ⅵ)去除率的影响.实验结果表明:酸性环境有利于壳聚糖类吸附剂对Cr(Ⅵ)的吸附,pH为6.0时吸附效果最佳.交联壳聚糖和印迹壳聚糖对Cr(Ⅵ)的吸附速率在前20 min较快,90 min即可达到吸附平衡.对30 mg/L 的Cr(Ⅵ)溶液,交联壳聚糖与印迹壳聚糖对Cr(Ⅵ)的去除率随投加量增加而增加,在投加量为3.5 g/L时,对Cr(Ⅵ)的去除率最高可达到92.4%和97.8%.相同实验条件下,印迹壳聚糖对Cr(Ⅵ)的吸附较交联壳聚糖有明显提高,其幅度最高可达7.3%.  相似文献   

8.
采用共沉淀法合成了Mg2ZnAl-CO3水滑石,并用XRD、TG-DTA、IR和TEM进行表征.以其为前驱体,经焙烧制得吸附剂,对模拟废水中的Cr(Ⅵ)进行了吸附研究.结果表明,吸附的最佳实验条件为:温度为35℃,pH为6,吸附时间为40min,Cr(Ⅵ)初始浓度为120mg/L.在最佳吸附条件下,吸附剂对废水中Cr(Ⅵ)的饱和吸附容量为31.44mg/g,相应的吸附去除效率为86.90%.  相似文献   

9.
通过一步碳化法合成磁性碳纳米吸附剂(MCNs),对不同温度下合成的纳米碳材料的微观结构进行分析,探究了不同MCNs制备温度、Cr(Ⅵ)初始浓度、pH等因素对Cr(Ⅵ)吸附效果的影响,获得吸附动力学规律,进一步对材料进行了循环吸附-解吸实验.实验结果表明:在25℃、pH=2、Cr(Ⅵ)初始浓度50 mg/L、吸附剂用量0.05 g下,接触时间为2 h时,MCN700对Cr(Ⅵ)的吸附率和吸附量分别可达96.90%和56.28 mg/g.吸附动力学拟合结果更贴合伪二级动力学方程,表明MCN700对溶液中Cr(Ⅵ)的吸附以化学吸附为主.MCN700经过6次吸附-解吸实验后吸附率下降11.61%,表明材料具有较好的稳定性和再生能力.因此,MCN700适用于酸性六价铬废水的处理.  相似文献   

10.
以氢氧化钾溶液浸泡制备改性锯末作为含Cr(Ⅵ)废水的吸附剂,用傅里叶红外光谱仪对改性前后锯末的化学性能进行分析.探讨了吸附剂投加量、Cr(Ⅵ)初始浓度、溶液初始pH值、吸附温度、吸附时间等因素对吸附效果的影响.实验证明:吸附剂对低浓度的含Cr(Ⅵ)废水的吸附效果较佳,在实验中溶液pH值对吸附效果的影响较大;吸附处理Cr(Ⅵ)的最佳条件为:吸附剂的投加量24g/L、Cr(Ⅵ)初始浓度25mg/L、溶液初始pH值为2,吸附温度50℃、吸附时间为2h,吸附率可达到98.73%;改性锯末对Cr(Ⅵ)的吸附过程符合准二级动力学模型(R~2=0.9981);吸附过程可用Freundlich吸附等温线来描述;通过再生实验表明,改性锯末可进行解析再生.  相似文献   

11.
采用中药材废渣基活性炭处理含Cr(VI)废水,考察了pH、离子浓度、活性炭投加量、吸附时间对其吸附性能的影响,并对其吸附过程进行初步研究。结果表明,在pH=2、离子浓度80mg/L、活性炭投加量0.1g以及吸附时间为1h下吸附性能最佳。活性炭对Cr(VI)的吸附等温线符合Freundlich模型,采用准二级动力学模型能更好的描述活性炭对Cr(VI)吸附动力学过程。  相似文献   

12.
陈金洪  张亭亭  王颖 《科学技术与工程》2020,20(24):10103-10108
以室内制备的Cr(VI)污染土为研究对象,以硫酸亚铁(FeSO4)为解毒剂,以碱性工业废渣胶凝材料(简称GFC)为固化剂,研究了GFC-FeSO4配比和养护龄期两种参数作用下修复后工程强度特性,并分析了修复后污染土Cr(VI)残留值和矿物成分的变化。结果表明:GFC-FeSO4在Cr(VI)污染土修复领域具有极高的应用前景,GFC-FeSO4既可有效降低污染土Cr(VI)残留值,又可使Cr(VI)污染土达到满足二次利用所需的强度特性。当养护龄期为28 d时,GFC-FeSO4配比为15 %/5 %时,修复后Cr(VI)污染土的工程强度高于我国主干路基层填料强度限值(4.0 MPa),且Cr(VI)残留值低于建设用地土壤(Ⅰ类)筛选值(3.0 mg/kg)。修复后Cr(VI)污染土的变形模量随工程强度的变化呈线性函数变化。GFC-FeSO4修复Cr(VI)污染土机理为生成了CrxFe1-x(OH)3、AFt、C-S-H和C-A-S-H等沉淀。  相似文献   

13.
为了提高对废水中Cr (Ⅵ)的去除效率,获得高效且成本低廉的吸附剂,以农业废弃物玉米秸秆为原材料制备生物炭,并采用氯化锌对其进行改性。实验表明,在固液比为2 g/L、pH为2、Cr (Ⅵ)溶液初始质量浓度为100 mg/L、吸附时间为6 h时,最佳改性剂比例条件下改性炭的去除率能够达到99.3%,比未改性的生物炭高73.7%。此外,考察了单一因素改性剂比例、溶液pH、吸附温度、离子强度对吸附效果的影响。同时研究了改性炭对Cr(Ⅵ)的吸附动力学和吸附等温线。结果说明该吸附是自发、熵增的吸热过程且吸附反应符合准二级动力学方程和Langmiur等温模型,最大饱和吸附容量为72.46 mg/g。通过扫描电镜(scanning electron microscopy)、傅里叶红外光谱(Fourier transform infrared spectroscopy)、X射线衍射(X-ray diffraction)等方法对原炭(biochar)和改性生物炭(modified biochar)进行表征,分析表明改性炭微孔结构明显,表面粗糙,吸附位点增加,芳香化程度提高,从而提高了吸附性能,且锌以氢氧化物颗粒形式存在于生物炭表面。  相似文献   

14.
本文考察了Fe3O4/纳米级Fe0对污染水中Cr(VI)的去除效果,以及Fe3O4投加量、腐殖酸投加量、温度对Fe3O4/纳米级Fe0去除水中Cr(VI)的影响。结果表明:Fe3O4/纳米级Fe0对水中Cr(VI)的去除效果很好,在2min时Cr(VI)的去除率就能够达到91.4%,这个值比纳米级Fe0单独作用120min时对 Cr(VI)的去除率还要高;Fe3O4与纳米级Fe0的配比为7.5:1时,Fe3O4/纳米级Fe0对Cr(VI)的去除效果最好。温度的升高加速了Fe3O4/纳米级Fe0对水中Cr(VI)还原降解反应的进行。  相似文献   

15.
采用活化法制备土霉素菌渣活性炭(菌渣炭),并用于处理低浓度含铬废水。经过组分测定可以看出土霉素菌渣含有较高的挥发分,灰分含量较低;元素分析中C、O元素的含量较高,表明土霉素菌渣含有大量的有机物和菌体蛋白;BET测得菌渣炭的比表面积、孔容和孔径都较大,通过扫描电镜可观察出菌渣炭具有较多的微孔和中孔,有利于对Cr(VI)定的吸附。通过单因素实验确定在初始Cr(VI)浓度为2mg/L时菌渣炭对Cr(VI)的最佳吸附pH、吸附剂投加量、吸附时间分别为4、0.5g/L、 50min, Cr(VI)的最高去除率为96.2%。热力学和动力学分析结果表明菌渣炭对Cr(VI)的吸附符合Freundlich等温吸附模型和准二级动力学模型。菌渣炭的饱和吸附量为17.93 mg/g,对Cr(VI)的吸附速率与吸附剂上未被占据的吸附位点的平方成正比。用1mol/L的HCl对菌渣炭进行洗脱再生,经过4次循环实验Cr(VI)的去除率为77.1%,剩余溶液中Cr(VI)浓度为0.459 mg/L,满足污水综合排放标准0.5 mg/L,菌渣炭的饱和吸附量为2.018 mg/g,表明菌渣炭的再生性能良好。  相似文献   

16.
活性炭纤维纸的制备、结构及性能研究   总被引:2,自引:0,他引:2  
采用湿法造纸工艺制备活性炭纤维纸(ACFP),探讨了分散剂、活性炭纤维与纸浆纤维配比对活性炭纤维纸的透气度、抗张强度、比表面积和微孔体积的影响。结果表明,分散剂可增加ACFP的抗张强度而对透气度影响较小,随活性炭纤维含量的增加,ACFP的透气度增加而抗张强度下降, ACFP具有与活性炭纤维类似的孔径大小和孔径分布, 二者的氮气吸附等温线均为I型等温线,吸附机理均为微孔填充,ACFP的形态结构为无序随机排列。  相似文献   

17.
以钠基改性膨润土和酞酸丁酯为原料,采用溶胶凝胶法(sol-gel)制备钛柱撑膨润土(Ti-PILC)复合材料。研究了光源、Ti-PILC加入量、Cr(Ⅵ)初始质量浓度和初始pH值对Ti-PILC复合材料光催化降解Cr(Ⅵ)的影响。结果表明:在紫外光照下,Ti-PILC对Cr(Ⅵ)具有较强的光催化降解能力,其中焙烧样品的催化活性最高;综合最优的实验条件是ρTi-PILC=15g/L,ρCr(Ⅵ)=10mg/L,溶液体系pH为3.4。研究了Cr(Ⅵ)光降解还原过程的反应机理。  相似文献   

18.
以戊二醛、三乙烯四胺、乙二胺为原料,制备了聚酰胺树脂.用聚酰胺树脂填充分离柱,在1 mol/L的酸度条件下,以5 mL/min的流速洗脱Cr(Ⅵ),Cr(Ⅵ)被全部吸附而Cr(Ⅲ)不被吸附.被吸附的Cr(Ⅵ)用10g/L氢氧化钠从聚酰胺分离柱上洗脱.分离的Cr(Ⅲ)和Cr(Ⅵ)用棓花青褪色光度法在530 nm下分别测定其含量.此法对10 mg/L的Cr(Ⅵ)和Cr(Ⅲ)测定的相对标准偏差分别为1.24%和1.41%,加标回收率为92.0%和96.8%,实验结果令人满意.  相似文献   

19.
 为开发新型环境材料,改进治理技术以控制或修复污染水体中Cr(Ⅵ),采用NaBH4还原Fe3+制备纳米级零价铁(NZVI).X射线衍射(XRD)及扫描电镜(SEM)测试表明,制备的纳米铁颗粒纯度高、粒径小、粒度均匀.以Cr(VI)为研究对象,批试验考查了溶液初始浓度、NZVI投加量、温度等条件对去除效果的影响,研究了NZVI对Cr(VI)的吸附动力学.结果表明,室温、pH值为6-7时,NZVI加入量为0.15g/L,水体中Cr(VI)浓度为30.0mg/L时,Cr(VI)最大吸附量为198.02mg/g,Cr(VI)在NZVI上的吸附符合准二级动力学方程.实验结果显示,纳米零价铁能快速去除水体中Cr(VI);溶液初始浓度、NZVI投加量等是影响Cr(VI)脱除的主要因素,Cr(VI)去除率随反应温度和NZVI投加量升高而升高,随初始浓度升高而降低.实验表明,该纳米铁在废水除铬领域具有较好的应用前景.  相似文献   

20.
以废茉莉花茶渣作为吸附剂,对含Cr(VI)溶液进行了吸附研究。分别考察了吸附时间、茶渣投加量、Cr(VI)初始浓度、茶渣粒径、温度、pH值等因素对废茉莉花茶渣吸附Cr(VI)的影响。在吸附时间2小时、茶渣投加量为30g/L、Cr(VI)初始浓度为40mg/L、茶渣粒径60目、 pH值2.5时,茶渣对Cr(VI)吸附率达98.7%。温度越高,茶渣对Cr(VI)吸附效果越好。废茉莉花茶渣对Cr(VI)具有较好的吸附能力,是比较合适的重金属离子吸附剂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号