共查询到20条相似文献,搜索用时 0 毫秒
1.
针对当前卷积神经网络未能充分利用浅层特征信息, 并难以捕获各特征通道间的依赖关系、 丢失高频信息的问题, 提出一种新的生成对抗网络用于图像超分辨率重建. 首先, 在生成器中引入WDSR-B残差块充分提取浅层特征信息; 其次, 将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中, 学习各特征通道的重要程度和高频信息; 最后, 采用谱归一化代替不利于图像超分辨率的批规范化, 减少计算开销, 稳定训练. 实验结果表明, 该算法与其他经典算法相比能有效提高浅层特征信息的利用率, 较好地重建出图像的细节信息和几何特征, 提高超分辨率图像的质量. 相似文献
2.
超分辨率生成对抗网络(SRGAN)的高分辨率图像质量较传统方法有明显提升,然而其存在训练过程不稳定、图像浅层特征未充分使用等问题,很大程度上影响生成图像的质量.为此,提出一种特征增强改进的SRGAN模型,使用信息蒸馏块.通过对长短途特征在图像通道上的拼接增强特征纹理信息,利用压缩单元消除图像特征中的冗余信息.此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证生成对抗网络训练的稳定性.本研究基于4倍放大因子进行超分辨重建任务,并在BSD100和SET14数据集上进行实验结果的质化和量化评价.实验表明,该方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果. 相似文献
3.
现有的图像超分辨率重建方法都较少考虑真实低分辨率图像中包含的噪声信息,因此会影响图像的重建质量.受真实图像去噪算法的启发,本文引入一个噪声分布收集网络来收集低分辨率图像的噪声分布信息,并采用生成对抗网络的模型设计,提高含噪声图像的重建质量.噪声分布信息会分别输入到超分辨率重建网络和判别网络,在重建过程中去除噪声的同时保证有用高频信息的恢复,另外由于判别网络的能力对整个模型的性能有着重要影响,选择使用 U-Net 网络来获得更好的梯度信息反馈.与经典图像超分辨率重建算法的对比以及消融实验表明,使用噪声收集网络和 U-Net 判别网络后,本文模型在噪声低分辨率图像重建任务中获得了更好的性能. 相似文献
4.
深度学习在一定程度上解决了从低分辨率图像中恢复出高分辨率图像这一图像超分辨率问题。目前基于生成对抗网络(generative adversarial network,GAN)的方法可以从超分辨率数据集中学习低/高分辨率图像映射关系,从而生成具有真实纹理细节的超分辨率图像。然而,基于GAN的图像超分辨率模型训练通常不稳定,其结果往往带有纹理扭曲和噪声等问题,提出了采用掩膜(mask)模块以辅助对抗网络训练。在网络训练过程中,掩膜模块根据生成网络输出的超分辨率结果和原始高分辨率图像,计算得到相应观感质量信息,并进一步辅助对抗网络训练。在实验中对3个最近提出的基于GAN的图像超分辨率模型进行修改,引入掩膜模块,修改后的模型在超分辨率图像输出的观感和真实感量化指标上均有明显地提升。掩膜模块的优点是可以进一步提升基于GAN的图像超分辨率网络输出的超分辨率图像观感质量,并仅需对生成对抗网络训练框架进行修改,因此适用于多数基于GAN的图像超分辨率模型的进一步优化。 相似文献
5.
基于神经网络的图像超分辨率方法往往存在重建图像纹理结构模糊、缺失高频信息的问题。为了解决该问题,在SRGAN的基础上提出一种多尺度并联学习的生成对抗网络结构,其中生成模型由两个不同尺度的残差网络块组成,首先对提取的低分辨率图像通过两个子网络的多尺度特征学习,然后使用融合网络进行残差融合,融合不同尺度高频信息,最终生成高分辨图像。在Set5、Set14、BSD100基准数据集以及SpaceNet卫星图像数据集上的实验结果证明了该算法在恢复低分辨率图像的细节纹理信息具有良好效果。 相似文献
6.
针对目前基于深度学习的超分辨率重建图像存在的纹理等高频信息丢失问题,提出了多尺度残差生成对抗网络的图像超分辨率重建算法。首先,使用Dense-Res2Net模块替代SRGAN生成网络中原本的残差模块,并且组合特征压缩与激发网络(SENet)从多个尺度自适应地提取浅层特征信息。其次,引入全变分正则化损失(TV loss)指导生成器训练。最后,使用Wasserstein距离优化对抗损失,提高网络训练稳定性。实验结果表明,该算法重建出的图像在视觉效果上保留了更加丰富的高频细节,与当前主流超分算法相比,该方法不仅有更高的峰值信噪比(PNSR)与结构相似性(SSIM),且学习感知图像块相似度(LPIPS)的分数上均优其他算法。 相似文献
7.
《云南民族大学学报(自然科学版)》2019,(6):597-605
图像超分辨率重建(super-resolution, SR)是指从观测到的低分辨率图像重建出相应的高分辨率图像,在目标检测、医学成像和卫星遥感等领域都有着重要的应用价值.近年来,随着深度学习的迅速发展,基于深度学习的图像超分辨率重建方法取得了显著的进步.为了把握目前基于深度学习的图像超分辨率重建方法的发展情况和研究热点,对一些最新的基于深度学习的图像超分辨率重建方法进行了梳理,将它们分为两大类(有监督的和无监督的)分别进行阐述.然后,在公开的数据集上,将主流方法的性能进行了对比分析.最后,对基于深度学习的图像超分辨率重建方法进行了总结,并对其未来的研究趋势进行了展望. 相似文献
8.
9.
王宥翔 《河南教育学院学报(自然科学版)》2023,(4):47-52
借助深度学习方法,通过组合低层特征形成更加抽象的高层特征表示属性类别或特征,发现数据的分布式特征表示。采用生成对抗网络作为神经网络框架,实现了图像超分辨率的重建。 相似文献
10.
SRGAN是一种基于生成对抗网络的超分辨重建方法,其生成的高分辨率图像质量较传统方法有着明显提升,然而SRGAN存在着训练过程不稳定,图像浅层特征未充分使用等问题,很大程度上影响到了生成图像的质量。本文提出了一种特征增强改进的SRGAN模型,该模型使用信息蒸馏块进行特征纹理信息的增强,并消除图像特征中的冗余信息。此外,使用相对平均鉴别器替代原始SRGAN中的二分类鉴别器,保证了GAN网络训练的稳定性。本文基于4倍放大因子的超分辨重建任务,在BSD100数据集上进行实验结果的质化评价和量化评价。实验表明,本文方法较之SRGAN在训练过程中具有更好的稳定性,生成的图像具有更清晰的细节纹理,取得了更佳的图像超分辨率重建效果。 相似文献
11.
提出了校园航拍图像超分辨率重建的粒计算方法,包括:(1)提出了图像粒化方法,实现图像空间向粒度空间的转化;(2)设计粒之间合并运算和分解运算,构造粒之间的模糊包含关系μ和σ,实现不同粒度空间之间的转化,获取图像的先验知识,指导校园航拍图像超分辨率重建算法的设计;(3)根据自顶向下、自底向上两种模式和图像先验知识,设计校园航拍图像超分辨率重建粒计算算法,实现粒度空间向图像空间的转化.实验验证了提出方法的可行性. 相似文献
12.
海马子区体积很小且结构复杂,传统分割方法无法达到理想分割效果,为此引入生成对抗网络模型用于海马子区图像分割.该方法构建一个生成对抗网络模型,通过构建生成网络和对抗网络并对其进行交替对抗训练实现对脑部海马子区图像的像素级精确分割.实验选取美国旧金山CIND中心的32位实验者的脑部MRI图像进行海马子区分割测试,在定性和定量方面分别对比了所提方法基于稀疏表示与字典学习方法和传统CNN的分割结果.实验结果表明,该方法优于基于稀疏表示与字典学习和CNN方法,海马子区分割准确率有较大提升.该方法提升了海马子区的分割准确率,可用于大脑核磁图像中海马子区的分割,为诸多神经退行性疾病的临床诊断与治疗提供依据. 相似文献
13.
针对目前深度卷积神经网络(Convolutional Neural Network,CNN)在遥感图像建筑物提取上存在小目标漏分、被遮挡目标无法提取、细节缺失等问题,在生成对抗网络(Generative Adversarial Network,GAN)的基础上提出一种基于多尺度条件生成对抗网络(Multi-Scale Conditional Generative Adversarial Network,MSR-cGAN)的城市建筑物提取方法.该方法包括生成网络和对抗网络两个部分,在生成网络中加入循环残差卷积模块和注意力门限跳跃连接机制,增强模型的特征提取能力;在对抗网络中引入通道注意力的特征融合,使网络提取丰富的上下文信息,应对目标尺度变化,改善小目标分割效果.在实验过程中,对Inria Aerial Image Labeling建筑物提取数据集进行实验并与多种方法进行比较,结果表明,所提出的方法具有更高的目标分割准确率,对小目标与被遮挡目标取得了较好的分割效果.在训练数据有限、背景复杂多样、尺度变化较大的建筑物提取中分割准确率分别达到96.18%,表明提出的方法可应用于复杂的高分辨率... 相似文献
14.
针对复杂实际场景中模糊、污损、扭曲、倾斜等车牌图像关键信息缺失以及新能源车牌背景与字符对比度低难以识别的问题,提出了一种编解码结构的车牌图像超分辨率网络。首先,构建一种基于编解码结构的车牌重构生成器网络,利用编码器对车牌图像的纹理、字符等特征进行提取,解码器对车牌特征进行重构;然后,设计一种基于语义监督的判别器网络,在网络损失中引入了对抗损失与CTC(connectionist temporal classification)损失,增强生成器网络对车牌图像语义特征的表征能力;最后,基于VGG16网络提取车牌顶角点特征,利用坐标变换方法对车牌图像进行矫正,进一步提高重构清晰度与识别准确率。采用所提网络在自建XAUAT-Parking数据集和公开CCPD数据集上进行超分辨率重构与识别实验,结果表明:所提网络在CCPD数据集上的平均峰值信噪比可达25.5 dB,结构相似性(SSIM)可达0.989;在XAUAT-Parking数据集上峰值信噪比可达26.6 dB,结构相似性可达0.997。研究结果表明,该网络有较好的车牌图像超分辨率重建效果,而且对车牌关键信息缺失问题具有较强的鲁棒性。 相似文献
15.
为改善图像超分辨率重建的主观视觉效果,提出一种结合注意力机制的图像超分辨生成对抗网络(generative adversarial network, GAN)模型.该模型在生成器网络中引入通道和空间双重注意力机制,选取更合适的重要特征信息进行传递;判别器网络采用WGAN进行构建,通过Wasserstein距离定义对抗损失,解决了GAN模型的训练不稳定问题.该重建模型在Set5、Set14、BSD100和Urban100共4个标准数据集上进行了实验,结果表明,和主流的超分辨重建算法相比,该模型的主客观评价指标均有所提高,图像细节信息恢复更加清晰,重建质量更好. 相似文献
16.
高分辨率磁共振图像(MRI, magnetic resonance images)能够提高疾病诊断精度,但高分辨率MRI图像的获取十分困难。基于深度学习的图像超分辨率(SR, super resolution)技术可有效地提高图像分辨率。近年来,生成对抗网络(GANs, generative adversarial networks)为3D-MRI图像SR重建提供了新思路。相较于传统的基于深度卷积神经网络(DCNN, deep convolutional neural network)的SR算法,GANs网络以人类视觉机制为目标,且引入判别函数,使重建3D-MRI图像更接近真实图像。研究采用增强超分辨率生成对抗网络(ESRGAN, enhanced super-resolution generative adversarial networks)对3D-MRI图像进行SR重建;并利用3D-MRI图像的跨层面自相似性,将重建任务降维到2D,在保证重建效果的基础上,减少了网络训练时间和内存需求。通过与其他传统算法和基于DCNN算法对比实验表明,提出的算法能够进一步提高3D-MRI图像的视觉... 相似文献
17.
乳腺癌磁共振成像(nuclear magnetic resonance imaging, MRI)数据由于不同医院采集方式不同、设备不同或病人等自身原因,会存在同一病人不同序列缺失的问题。目前主流的图像生成对抗网络Pix2Pix和Cycle-consistency是医学图像生成的两种主要模式,这类方法要求不同MRI序列数据配对出现,难以处理存在缺失的数据,此外,该类方法往往关注整幅图像的生成质量,缺少对疾病诊断更有价值的病灶区域的生成质量的监控。针对以上问题,该文受配准网络(RegGAN)自适应对准图像空间分布的启发,设计了一种新的基于特征增强的双注意力配准生成对抗网络DA-RegGAN。该网络在生成器中引入卷积注意力模块,使网络更注重病灶的学习;在判别器中添加梯度正则化约束,主要解决网络训练不稳定容易出现模式崩溃的现象,使网络生成包含更清晰的病灶细节全局图。该文在1 697幅乳腺数据上开展消融实验、不同图像生成算法间的对比实验、肿瘤分类实验,进一步验证了方法的有效性。与原始RegGAN比,全局图像生成质量和局部病灶图像生成质量均得到提升,局部图像质量较原始PSNR提升了0.518,S... 相似文献
18.
该文提出了一种改进条件生成对抗网络的文本生成图像模型(TxtGAN),使用一对生成器和判别器的单阶段生成方式生成高分辨率图像,避免因训练多个GAN消耗大量计算资源.生成器网络由一系列生成模块(RUPBlock)组成,每个模块中应用条件批量归一化方法,在实现图像生成的同时充分融合了文本信息与图像特征,较好地保留了文本信息... 相似文献
19.
提出了一种新的基于生成对抗网络的人脸图像彩色化方法.所提出的网络结构包含两组生成对抗子网络,每个子网络由一个生成器和判别器组成.其中,一个对抗子网络A(包含生成器A和判别器A)实现从灰度图像到彩色图像的翻译过程,另一个子网络B(包含生成器B和判别器B)反转该过程,即生成器B对称地使用生成器A的最终输出图像作为输入,用来重建原始的人脸灰度图像.其中,网络中的循环损失进行图像重建,而生成损失和对抗损失用来保证生成的图像更加接近真实图像.实验结果表明,这种结构设计不仅能实现自然逼真的人脸图像彩色化,还能同时保证人脸的身份属性不变. 相似文献
20.
针对对抗生成神经网络在人脸轮廓细节恢复上不够完善的问题,利用人脸图像的结构先验信息提出了一种边缘增强的生成对抗网络人脸超分辨率的重建算法.首先,利用人脸图像及其边缘图像的一致性关系设计一种并行网络提取面部和边缘细节特征;然后,通过特征融合网络获得高分辨率的生成图像;最后,利用判别网络判别生成图像的真伪.在人脸图像数据库上进行的人脸超分辨率重建实验结果表明:提出的边缘增强生成对抗网络能够提升面部细节重建能力,主观和客观评价指标均优于现有的人脸超分辨率算法. 相似文献