首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Although it has been proposed that the activation of T lymphocytes is mediated by an early rise in cytosolic calcium concentration, it has not been possible to mimic antigen- or mitogen-induced mouse lymphocyte activation by calcium ionophores that bypass receptor-mediated processes. There is now evidence from other systems that the rise in cytosolic calcium which follows receptor triggering is preceded by the breakdown of phosphatidylinositol bisphosphate into 1,2-diacylglycerol and inositol trisphosphate. The latter is known to cause release of calcium from intracellular stores. The cellular target for the former is now widely accepted to be protein kinase C. Therefore, ligand-induced cellular response follows a rise in cytosolic calcium concentration and protein kinase C activation. Here we confirm that the calcium ionophores A23187 and ionomycin do not activate mouse T lymphocytes. However, either one in combination with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA), which is structurally related to 1,2-diacylglycerol, induces in lymphoid cell populations the expression of receptors for interleukin-2 (IL-2), the secretion of IL-2 and cell proliferation as measured by 3H-thymidine uptake. The growth-promoting effect of IL-2 on an exogenous IL-2-dependent clone could not be substituted for by ionomycin either alone or with TPA. Thus, the combination of calcium ionophores and TPA bypasses the requirement for antigen- or lectin-induced signal at the onset of lymphocyte activation.  相似文献   

2.
Electrical activity in non-neuronal cells can be induced by altering the membrane potential and eliciting action potentials. For example, hormones, nutrients and neurotransmitters act on excitable endocrine cells. In an attempt to correlate such electrical activity with regulation of cell activation, we report here direct measurements of cytosolic free Ca2+ changes coincident with action potentials. This was achieved by the powerful and novel combination of two complex techniques, the patch clamp and microfluorimetry using fura 2 methodology. Changes in intracellular calcium concentration were monitored in single cells of the pituitary line GH3B6. We show that a single action potential leads to a marked transient increase in cytosolic free calcium. The size of these short-lived maxima is sufficient to evoke secretory activity. The striking kinetic features of these transients enabled us to identify oscillations in intracellular calcium concentration in unperturbed cells resulting from spontaneous action potentials, and hence provide an explanation for basal secretory activity. Somatostatin, an inhibitor of pituitary function, abolishes the spontaneous spiking of free cytosolic Ca2+ which may explain its inhibitory effect on basal prolactin secretion. Our data therefore demonstrate that electrical activity can stimulate Ca2+-dependent functions in excitable non-neuronal cells.  相似文献   

3.
Is an early calcium flux necessary to stimulate lymphocytes?   总被引:1,自引:0,他引:1  
Concentrations of concanavalin A or the calcium ionophore A23187 that are optimal for the transformation of pig or mouse lymphocytes do not normally cause a measurable increase in calcium influx compared with unstimulated cells. If the cells are treated with the mitogens in conditions where a measurable increase in calcium influx occurs, no stimulation of the cells can occur while the flux is maintained. If an early influx of extracellular calcium is necessary for stimulation, then a much smaller increase in the total concentration of cellular calcium than reported previously is sufficient to allow the entry of lymphocytes into the cell cycle.  相似文献   

4.
Recent experiments show that calcium signaling and degranulation dynamics induced by low power laser irradiation in mast cells must rely on extracellular Ca^2+ influx. An analytical expression of Ca^2+ flux through TRPV4 cation channel in response to interaction of laser photon energy and extracellular Ca^2+ is deduced, and a model characterizing dynamics of calcium signaling and degranulation activated by laser irradiation in mast cells is established. The model indicates that the characteristics of calcium signaling and degranulation dynamics are determined by interaction between laser photon energy and Ca^2+ influx. Extracellular Ca^2+ concentration is so high that even small photon energy can activate mast cells, thus avoiding the possible injury caused by laser irradiation with shorter wavelengths. The model predicts that there exists a narrow parameter domain of photon energy and extracellular Ca^2+ concentration of which results in cytosolic Ca^2+ limit cycle oscillations, and shows that PKC activity is in direct proportion to the frequency of Ca^2+ oscillations. With the model it is found that sustained and stable maximum plateau of cytosolic Ca^2+ concentration can get optimal degranulation rate. Furthermore, the idea of introducing the realistic physical energy into model is applicable to modeling other physical signal transduction systems.  相似文献   

5.
余志强 《实验室科学》2012,15(4):179-181
楼宇自动化系统模块化训练设备由上位机、直接数字控制器(简称DDC控制器)模块和受控设备模块组成,能实现暖通空调、给排水等建筑机电设备运行时的实时监控,实现温度、湿度、压力、液位、气体浓度、流量等参数的检测和控制,实现过滤网堵塞、电动机过载等的报警和动作,与消防报警及联动系统配合实现暖通空调系统与防火阀自动切换等功能。  相似文献   

6.
S M Ali  M J Geisow  R D Burgoyne 《Nature》1989,340(6231):313-315
Stimulation of bovine adrenal chromaffin cells results in a rise in the concentration of cytosolic calcium which triggers the release of catecholamines by exocytosis. Several cytosolic proteins that bind to secretory granule membranes in a calcium-dependent manner have been implicated in exocytosis and some belong to a family of calcium-binding proteins, the annexins. One of these, calpactin, is a tetramer consisting of two heavy and two light chains (relative molecular masses 36,000 and 10,000 respectively) and can aggregate and fuse membranes in vitro in the presence of arachidonic acid. Calpactin is found at the cell periphery and is phosphorylated when chromaffin cells are stimulated. We show here that both calpactin and calpactin heavy chain (p36) reconstitute secretion in permeabilized chromaffin cells in which secretion has been reduced as a result of leakage of cellular components. This effect is inhibited by an affinity-purified antibody against p36. Secretion from permeabilized cells is inhibited by a synthetic annexin-consensus peptide, but not by a nonspecific hydrophobic peptide; this inhibition is reversed by p36. Our results indicate that either calpactin or p36 is essential for exocytosis.  相似文献   

7.
The respiratory burst is an important physiological function of the neutrophils in killing the bacteria invading in human body. We used chemiluminescence method to measure the exogenous arachidonic acid-stimulated respiratory burst, and measured the cytosolic free calcium concentration in neutrophils by the fluorescence method. It was found that, on one hand, the arachidonic acid-stimulated respiratory burst was enhanced by elevating the cytosolic free calcium concentration in neutrophils with a potent endomembrane Ca2+-ATPase inhibitor, Thapsgargin; on the other hand, chelating the intracellular or extracellular calcium by EGTA or BAPTA inhibited the respiratory burst. Results showed that calcium plays an important regulatory role in the signaling pathway involved in the exogenous arachidonic acid-stimulated respiratory burst of neutrophils.  相似文献   

8.
H Kasai  G J Augustine 《Nature》1990,348(6303):735-738
Exocrine gland cells secrete Cl(-)-rich fluid when stimulated by neurotransmitters or hormones. This is generally ascribed to a rise in cytosolic Ca2+ concentration ([Ca2+]i), which leads to activation of Ca2(+)-dependent ion channels. A precise understanding of Cl- secretion from these cells has been hampered by a lack of knowledge about the spatial distribution of the Ca2+ signal and of the Ca2(+)-dependent ion channels in the secreting epithelial cells. We have now used the whole-cell patch-clamp method and digital imaging of [Ca2+]i to examine the response of rat pancreatic acinar cells to acetylcholine. We found a polarization of [Ca2+]i elevation and ion channel activation, and suggest that this comprises a novel 'push-pull' mechanism for unidirectional Cl- secretion. This mechanism would represent a role for cytosolic Ca2+ gradients in cellular function. The cytosolic [Ca2+]i gradients and oscillations of many other cells could have similar roles.  相似文献   

9.
Y Osipchuk  M Cahalan 《Nature》1992,359(6392):241-244
Rat basophilic leukaemia cells, like mast cells from which they are derived, have surface Fc epsilon receptors that trigger secretion of inflammatory mediators when crosslinked. Both GTP-binding proteins and a rise in cytosolic calcium concentration ([Ca2+]i) are implicated in the secretory mechanism. Here we use a video-imaging technique to report that transient rises in [Ca2+]i initiated in an individual cell can spread from cell to cell in a wave-like pattern by means of a secreted intermediate, in the absence of gap-junctional communication. We find that the leukaemia cells, peritoneal mast cells and mucosal mast cells have cell-surface P2-type purinergic receptors that can trigger similar [Ca2+]i transients. We provide evidence that ATP is rapidly released, and that it can amplify [Ca2+]i signals and initial secretory responses during antigen-stimulation of rat basophilic leukaemia cells.  相似文献   

10.
A H Drummond 《Nature》1985,315(6022):752-755
It is now established that a key step in the action of calcium-mobilizing agonists is stimulation of the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2) to 1,2-diacylglycerol and inositol 1,4,5-trisphosphate (InsP3). The latter substance acts as a second messenger, controlling the release of calcium from intracellular stores (see ref. 3 for review). The bifurcating nature of the signalling system is exemplified by the fact that the other product of PtdIns(4,5)P2 hydrolysis, 1,2-diacylglycerol, can alter cellular function by activating protein kinase C, the cellular target for several tumour-promoting agents such as the phorbol esters. In various tissues, including GH3 pituitary tumour cells, a synergistic interaction between calcium ions and protein kinase C underlies agonist-induced changes in cell activity. The data presented here suggest that when GH3 cells are stimulated by thyrotropin-releasing hormone (TRH), an agonist inducing PtdIns(4,5)P2 hydrolysis, the two limbs of the inositol lipid signalling system interact to control free cytosolic calcium levels [( Ca2+]i). At low levels of TRH receptor occupancy, [Ca2+]i increases rapidly, then declines relatively slowly. As receptor occupancy increases, the calcium signal becomes more short-lived due to the appearance of a second, inhibitory, component. This latter component, which is enhanced when [Ca2+]i is elevated by high potassium depolarization, is mimicked by active phorbol esters and by bacterial phospholipase C. It seems likely that protein kinase C subserves a negative feedback role in agonist-induced calcium mobilization.  相似文献   

11.
A Lückhoff  D E Clapham 《Nature》1992,355(6358):356-358
Receptor-mediated increases in the cytosolic free calcium ion concentration in most mammalian cells result from mobilization of Ca2+ from intracellular stores as well as transmembrane Ca2+ influx. Inositol 1,4,5-trisphosphate (InsP3) releases calcium from intracellular stores by opening a Ca(2+)-permeable channel in the endoplasmic reticulum. But the mechanism and regulation of Ca2+ entry into nonexcitable cells has remained elusive because the entry pathway has not been defined. Here we characterize a novel inositol 1,3,4,5-tetrakisphosphate (InsP4) and Ca(2+)-sensitive Ca(2+)-permeable channel in endothelial cells. We find that InsP4, which induces Ca2+ influx into acinar cells, enhances the activity of the Ca(2+)-permeable channel when exposed to the intracellular surface of endothelial cell inside-out patches. Our results suggest a molecular mechanism which is likely to be important for receptor-mediated Ca2+ entry.  相似文献   

12.
Calcium entry through voltage-activated Ca2+ channels is important in regulating many cellular functions. Activation of these channels in many cell types results in feedback regulation of channel activity. Mechanisms linking Ca2+ channel activity with its downregulation have been described, but little is known of the events responsible for the enhancement of Ca2+ current that in many cells follows Ca2+ channel activation and an increase in cytoplasmic Ca2+ concentration. Here we investigate how this positive feedback is achieved in single smooth muscle cells. We find that in these cells voltage-activated calcium current is persistently but reversibly enhanced after periods of activation. This persistent enhancement of the Ca2+ current is mediated by activation of calmodulin-dependent protein kinase II because it is blocked when either the rise in cytoplasmic Ca2+ is inhibited or activation of calmodulin-dependent protein kinase II is prevented by specific peptide inhibitors of calcium-calmodulin or calmodulin-dependent protein kinase II itself. This mechanism may be important in different forms of Ca2+ current potentiation, such as those that depend on prior Ca2+ channel activation or are a result of agonist-induced release of Ca2+ from internal stores.  相似文献   

13.
 钙离子是细胞中一种很重要的第二信使,通常它以钙离子浓度振荡的方式转导多种生理学信息,影响细胞分化、成熟和凋亡等各种生理过程,最终导致生物效应。通过实验研究了细胞钙浓度的变化对周期信号的响应和建立在多细胞模型的基础上,从肝细胞内钙离子振荡的动力学模型出发,以胞间耦合因子作为影响因子,数值分析单细胞、耦合的多细胞下的胞内钙振荡形式。实验结果表明:细胞钙振荡对不同频率和强度的周期信号的响应是不同的:对有的参数周期信号能产生强烈响应,有的不能。数值分析结果表明:细胞间的差异性导致钙振荡不同,胞间耦合影响多细胞钙振荡的同步性。  相似文献   

14.
H A Pershadsingh  J M McDonald 《Nature》1979,281(5731):495-497
The mechanism by which insulin regulates cellular metabolism remains unknown although indirect evidence suggests that alterations in intracellular calcium are important. More specifically, it has been proposed that insulin triggers an increase in intracellular calcium which is responsible for the subsequent modification of metabolic activities. The cell maintains a large electrochemical gradient for ionised calcium between the cytoplasm (less than 10(-6) M, as determined for muscle and nerve) and the extracellular environment (less than 10(-3) M). The plasma membrane may, therefore, be important in the regulation of calcium homeostasis, as a slight alteration in the processes maintaining this gradient could result in marked changes in cytoplasmic calcium. One such process is the active extrusion of calcium from the cell by a high affinity calcium-stimulated ATPase (Ca2+-ATPase). Such a mechanism has been well established in red cells and is postulated in nerve, liver and muscle. We have identified a high affinity Ca2+-ATPase in a plasma membrane-enriched subcellular fraction isolated from rat adipocytes which may provide the enzymatic basis for a calcium extrusion pump. We demonstrate here that the Ca2+-ATPase is specifically inhibited by the direct addition of physiological concentrations of insulin to the direct addition of physiological concentrations of insulin to the isolated plasma membranes. This effect suggests that direct regulation of calcium homeostasis may represent an important event in the mechanism of action of insulin.  相似文献   

15.
Introduction Transmitter secretion requires specialized secretory or- ganelles, the synaptic vesicles, for the packaging, stor- age, and exocytotic release of the transmitters[1,2]. The neurotransmitter acetylcholine (ACh) is released at the neuromuscular…  相似文献   

16.
M Kano  U Rexhausen  J Dreessen  A Konnerth 《Nature》1992,356(6370):601-604
Persistent changes in synaptic efficacy are thought to underlie the formation of learning and memory in the brain. High-frequency activation of an afferent excitatory fibre system can induce long-term potentiation, and conjunctive activation of two distinct excitatory synaptic inputs to the cerebellar Purkinje cells can lead to long-term depression of the synaptic activity of one of the inputs. Here we report a new form of neural plasticity in which activation of an excitatory synaptic input can induce a potentiation of inhibitory synaptic signals to the same cell. In cerebellar Purkinje cells stimulation of the excitatory climbing fibre synapses is followed by a long-lasting (up to 75 min) potentiation of gamma-aminobutyric acid A (GABAA) receptor-mediated inhibitory postsynaptic currents (i.p.s.cs), a phenomenon that we term rebound potentiation. Using whole-cell patch-clamp recordings in combination with fluorometric video imaging of intracellular calcium ion concentration, we find that a climbing fibre-induced transient increase in postsynaptic calcium concentration triggers the induction of rebound potentiation. Because the response of Purkinje cells to bath-applied exogenous GABA is also potentiated after climbing fibre-stimulation with a time course similar to that of the rebound potentiation of i.p.s.cs, we conclude that the potentiation is caused by a calcium-dependent upregulation of postsynaptic GABAA receptor function. We propose that rebound potentiation is a mechanism by which in vivo block of climbing fibre activity induces an increase in excitability in Purkinje cells. Moreover, rebound potentiation of i.p.s.cs is a cellular mechanism which, in addition to the long-term depression of parallel fibre synaptic activity, may have an important role for motor learning in the cerebellum.  相似文献   

17.
Integration and processing of electrical signals in individual neurons depend critically on the spatial distribution of ion channels on the cell surface. In hippocampal pyramidal neurons, voltage-sensitive calcium channels have important roles in the control of Ca2(+)-dependent cellular processes such as action potential generation, neurotransmitter release, and epileptogenesis. Long-term potentiation of synaptic transmission in the hippocampal pyramidal cell, a form of neuronal plasticity that is thought to represent a cellular correlate of learning and memory, is dependent on Ca2+ entry mediated by synaptic activation of glutamate receptors that have a high affinity for NMDA (N-methyl(-D-aspartate) and are located in distal dendrites. Stimuli causing long-term potentiation at these distal synapses also cause a large local increase in cytosolic Ca2+ in the proximal regions of dendrites. This increase has been proposed to result from activation of voltage-gated Ca2+ channels. At least four types of voltage-gated Ca2+ channels, designated N, L. T and P, may be involved in these processes. Here we show that L-type Ca2+ channels, visualized using a monoclonal antibody, are located in the cell bodies and proximal dendrites of hippocampal pyramidal cells and are clustered in high density at the base of major dendrites. We suggest that these high densities of L-type Ca2+ channels may serve to mediate Ca2+ entry into the pyramidal cell body and proximal dendrites in response to summed excitatory inputs to the distal dendrites and to initiate intracellular regulatory events in the cell body in response to the same synaptic inputs that cause long-term potentiation at distal dendritic synapses.  相似文献   

18.
Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more actively dividing. Moreover, stem cell progeny divisions are spatially organized within follicles. In addition to cell divisions, coordinated cell movements of the progeny allow the rapid expansion of the hair follicle. Finally, we show the requirement of the mesenchyme for hair regeneration through targeted cell ablation and long-term tracking of live hair follicles. Thus, we have established an in vivo approach that has led to the direct observation of cellular mechanisms of growth regulation within the hair follicle and that has enabled us to precisely investigate functional requirements of hair-follicle components during the process of physiological regeneration.  相似文献   

19.
Euglena gracilis 277, a unicellular green alga, demonstrated remarkable ability to transport Nd3+ to the cell compartments. For a given amount of Nd3+ and cells, the results of ICP-AES indicated that the cellular uptake of Nd3+ was independent of Nd3+ concentration in the bulk solution. The average uptake of Nd3+ per cell (mNd) is proportional to a parameter ζ -- the ratio of neodymium content to the cell counts of the system. A novel approach for probing cellular neodymium by tetraiodotetra chlorofluorescein (I4TCF) has been devised. Data derived from the cryosections of I4TCF-Nd3+ stained cells and EDAX of the fast freezing ultrathin cryosections indicate that Nd3+ is distributed over the cell compartments. Chloroplasts are the major compartments as the residence of Nd3+ in the alga. The transport should be against a concentration gradient of Nd3+ on the order of five, even higher. It is proposed that a calcium ion channel would play an important role in the Nd3+ transportation.  相似文献   

20.
A Morgan  R D Burgoyne 《Nature》1992,355(6363):833-836
In many cell types an increase in cytosolic calcium is the main signal for the exocytotic release of stored secretory components such as hormones and neurotransmitters. The site of action of calcium in exocytosis is not known, neither are the participating molecules. In the case of the intracellular membrane fusions that occur during transport through early stages of the secretory pathway, several cytosolic and peripheral membrane proteins are necessary. Permeabilized cells have been useful in understanding the requirements for calcium and nucleotides in regulated exocytosis and under certain conditions there is leakage of soluble protein components and run-down of the exocytotic response. This system can be used to identify the soluble proteins involved in exocytosis, one candidate in chromaffin cells being annexin II (calpactin). Here we use this assay to identify two other cytosolic protein factors that regulate exocytosis in permeabilized adrenal chromaffin cells, which we term Exo1 and Exo2. Exo1 from brain cytosol resolves on electrophoresis in SDS-polyacrylamide gels as a group of polypeptides of relative molecular mass approximately 30,000 and shares sequence homology with the 14-3-3 family of proteins. The ability of Exo1 to reactivate exocytosis is potentiated by protein kinase C activation and therefore Exo1 may influence the protein kinase C-mediated control of Ca(2+)-dependent exocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号