首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ponce de León MS  Zollikofer CP 《Nature》2001,412(6846):534-538
Homo neanderthalensis has a unique combination of craniofacial features that are distinct from fossil and extant 'anatomically modern' Homo sapiens (modern humans). Morphological evidence, direct isotopic dates and fossil mitochondrial DNA from three Neanderthals indicate that the Neanderthals were a separate evolutionary lineage for at least 500,000 yr. However, it is unknown when and how Neanderthal craniofacial autapomorphies (unique, derived characters) emerged during ontogeny. Here we use computerized fossil reconstruction and geometric morphometrics to show that characteristic differences in cranial and mandibular shape between Neanderthals and modern humans arose very early during development, possibly prenatally, and were maintained throughout postnatal ontogeny. Postnatal differences in cranial ontogeny between the two taxa are characterized primarily by heterochronic modifications of a common spatial pattern of development. Evidence for early ontogenetic divergence together with evolutionary stasis of taxon-specific patterns of ontogeny is consistent with separation of Neanderthals and modern humans at the species level.  相似文献   

2.
Molecular analysis of Neanderthal DNA from the northern Caucasus   总被引:30,自引:0,他引:30  
The expansion of premodern humans into western and eastern Europe approximately 40,000 years before the present led to the eventual replacement of the Neanderthals by modern humans approximately 28,000 years ago. Here we report the second mitochondrial DNA (mtDNA) analysis of a Neanderthal, and the first such analysis on clearly dated Neanderthal remains. The specimen is from one of the eastern-most Neanderthal populations, recovered from Mezmaiskaya Cave in the northern Caucasus. Radiocarbon dating estimated the specimen to be approximately 29,000 years old and therefore from one of the latest living Neanderthals. The sequence shows 3.48% divergence from the Feldhofer Neanderthal. Phylogenetic analysis places the two Neanderthals from the Caucasus and western Germany together in a clade that is distinct from modern humans, suggesting that their mtDNA types have not contributed to the modern human mtDNA pool. Comparison with modern populations provides no evidence for the multiregional hypothesis of modern human evolution.  相似文献   

3.
The earliest anatomically modern humans in Europe are thought to have appeared around 43,000-42,000 calendar years before present (43-42 kyr cal BP), by association with Aurignacian sites and lithic assemblages assumed to have been made by modern humans rather than by Neanderthals. However, the actual physical evidence for modern humans is extremely rare, and direct dates reach no farther back than about 41-39 kyr cal BP, leaving a gap. Here we show, using stratigraphic, chronological and archaeological data, that a fragment of human maxilla from the Kent's Cavern site, UK, dates to the earlier period. The maxilla (KC4), which was excavated in 1927, was initially diagnosed as Upper Palaeolithic modern human. In 1989, it was directly radiocarbon dated by accelerator mass spectrometry to 36.4-34.7 kyr cal BP. Using a Bayesian analysis of new ultrafiltered bone collagen dates in an ordered stratigraphic sequence at the site, we show that this date is a considerable underestimate. Instead, KC4 dates to 44.2-41.5 kyr cal BP. This makes it older than any other equivalently dated modern human specimen and directly contemporary with the latest European Neanderthals, thus making its taxonomic attribution crucial. We also show that in 13 dental traits KC4 possesses modern human rather than Neanderthal characteristics; three other traits show Neanderthal affinities and a further seven are ambiguous. KC4 therefore represents the oldest known anatomically modern human fossil in northwestern Europe, fills a key gap between the earliest dated Aurignacian remains and the earliest human skeletal remains, and demonstrates the wide and rapid dispersal of early modern humans across Europe more than 40 kyr ago.  相似文献   

4.
The appearance of anatomically modern humans in Europe and the nature of the transition from the Middle to Upper Palaeolithic are matters of intense debate. Most researchers accept that before the arrival of anatomically modern humans, Neanderthals had adopted several 'transitional' technocomplexes. Two of these, the Uluzzian of southern Europe and the Chatelperronian of western Europe, are key to current interpretations regarding the timing of arrival of anatomically modern humans in the region and their potential interaction with Neanderthal populations. They are also central to current debates regarding the cognitive abilities of Neanderthals and the reasons behind their extinction. However, the actual fossil evidence associated with these assemblages is scant and fragmentary, and recent work has questioned the attribution of the Chatelperronian to Neanderthals on the basis of taphonomic mixing and lithic analysis. Here we reanalyse the deciduous molars from the Grotta del Cavallo (southern Italy), associated with the Uluzzian and originally classified as Neanderthal. Using two independent morphometric methods based on microtomographic data, we show that the Cavallo specimens can be attributed to anatomically modern humans. The secure context of the teeth provides crucial evidence that the makers of the Uluzzian technocomplex were therefore not Neanderthals. In addition, new chronometric data for the Uluzzian layers of Grotta del Cavallo obtained from associated shell beads and included within a Bayesian age model show that the teeth must date to ~45,000-43,000 calendar years before present. The Cavallo human remains are therefore the oldest known European anatomically modern humans, confirming a rapid dispersal of modern humans across the continent before the Aurignacian and the disappearance of Neanderthals.  相似文献   

5.
Morphological traits typical of Neanderthals began to appear in European hominids at least 400,000 years ago and about 150,000 years ago in western Asia. After their initial appearance, such traits increased in frequency and the extent to which they are expressed until they disappeared shortly after 30,000 years ago. However, because most fossil hominid remains are fragmentary, it can be difficult or impossible to determine unambiguously whether a fossil is of Neanderthal origin. This limits the ability to determine when and where Neanderthals lived. To determine how far to the east Neanderthals ranged, we determined mitochondrial DNA (mtDNA) sequences from hominid remains found in Uzbekistan and in the Altai region of southern Siberia. Here we show that the DNA sequences from these fossils fall within the European Neanderthal mtDNA variation. Thus, the geographic range of Neanderthals is likely to have extended at least 2,000 km further to the east than commonly assumed.  相似文献   

6.
Gravina B  Mellars P  Ramsey CB 《Nature》2005,438(7064):51-56
The question of the coexistence and potential interaction between the last Neanderthal and the earliest intrusive populations of anatomically modern humans in Europe has recently emerged as a topic of lively debate in the archaeological and anthropological literature. Here we report the results of radiocarbon accelerator dating for what has been reported as an interstratified sequence of late Neanderthal and early anatomically modern occupations at the French type-site of the Chatelperronian, the Grotte des Fées de Chatelperron, in east-central France. The radiocarbon measurements seem to provide the earliest secure dates for the presence of Aurignacian technology--and from this, we infer the presence of anatomically modern human populations--in France.  相似文献   

7.
Anatomically modern humans have long been thought to have been responsible for the Aurignacian and Chatelperronian industries of the early Upper Palaeolithic of Western Europe, whereas the Middle Palaeolithic Mousterian industry has been attributed to Neanderthals. The presence of both Middle and Upper Palaeolithic strata at Saint-Césaire in France offers an excellent opportunity for studying the cultural transition between the two. Saint-Césaire is the only Chatelperronian site that has yielded really diagnostic hominid fossils, and the discovery there of Neanderthal remains alongside Chatelperronian tools cast doubt on the exclusive association between industries and taxon. We report thermoluminescence dates for 20 burnt flints from the site. Those found near the Neanderthal remains were dated at 36,300 +/- 2,700 years BP (before present), making this specimen the youngest Neanderthal dated so far. This date places the stratum close in age to several French but much younger than some Spanish Aurignacian sites believed to have been occupied by modern humans. The possibility of contact between the West European Neanderthals and the intrusive modern humans who replaced them cannot therefore be excluded.  相似文献   

8.
Growth and development are both fundamental components of demographic structure and life history strategy. Together with information about developmental timing they ultimately contribute to a better understanding of Neanderthal extinction. Primate molar tooth development tracks the pace of life history evolution most closely, and tooth histology reveals a record of birth as well as the timing of crown and root growth. High-resolution micro-computed tomography now allows us to image complex structures and uncover subtle differences in adult tooth morphology that are determined early in embryonic development. Here we show that the timing of molar crown and root completion in Neanderthals matches those known for modern humans but that a more complex enamel-dentine junction morphology and a late peak in root extension rate sets them apart. Previous predictions about Neanderthal growth, based only on anterior tooth surfaces, were necessarily speculative. These data are the first on internal molar microstructure; they firmly place key Neanderthal life history variables within those known for modern humans.  相似文献   

9.
Maureille B 《Nature》2002,419(6902):33-34
Fossil remains of adult Neanderthals are well documented, but juvenile specimens are rare and information about them is scant. Here we identify a beautifully preserved skeleton that has been lost to science for almost 90 years as the Neanderthal neonate known as 'Le Moustier 2', which was originally found at Le Moustier in the Dordogne, southwest France. This find will be a rich source of data for studying the evolution of human ontogeny as well as the phylogenetic relationship between these extinct hominids and anatomically modern humans.  相似文献   

10.
Neanderthals and the modern human colonization of Europe   总被引:1,自引:0,他引:1  
Mellars P 《Nature》2004,432(7016):461-465
The fate of the Neanderthal populations of Europe and western Asia has gripped the popular and scientific imaginations for the past century. Following at least 200,000 years of successful adaptation to the glacial climates of northwestern Eurasia, they disappeared abruptly between 30,000 and 40,000 years ago, to be replaced by populations all but identical to modern humans. Recent research suggests that the roots of this dramatic population replacement can be traced far back to events on another continent, with the appearance of distinctively modern human remains and artefacts in eastern and southern Africa.  相似文献   

11.
C Dean  M G Leakey  D Reid  F Schrenk  G T Schwartz  C Stringer  A Walker 《Nature》2001,414(6864):628-631
A modern human-like sequence of dental development, as a proxy for the pace of life history, is regarded as one of the diagnostic hallmarks of our own genus Homo. Brain size, age at first reproduction, lifespan and other life-history traits correlate tightly with dental development. Here we report differences in enamel growth that show the earliest fossils attributed to Homo do not resemble modern humans in their development. We used daily incremental markings in enamel to calculate rates of enamel formation in 13 fossil hominins and identified differences in this key determinant of tooth formation time. Neither australopiths nor fossils currently attributed to early Homo shared the slow trajectory of enamel growth typical of modern humans; rather, both resembled modern and fossil African apes. We then reconstructed tooth formation times in australopiths, in the approximately 1.5-Myr-old Homo erectus skeleton from Nariokotome, Kenya, and in another Homo erectus specimen, Sangiran S7-37 from Java. These times were shorter than those in modern humans. It therefore seems likely that truly modern dental development emerged relatively late in human evolution.  相似文献   

12.
The geographical origin of modern humans is the subject of ongoing scientific debate. The 'multiregional evolution' hypothesis argues that modern humans evolved semi-independently in Europe, Asia and Africa between 100,000 and 40,000 years ago, whereas the 'out of Africa' hypothesis contends that modern humans evolved in Africa between 200 and 100 kyr ago, migrating to Eurasia at some later time. Direct palaeontological, archaeological and biological evidence is necessary to resolve this debate. Here we report the discovery of early Middle Stone Age artefacts in an emerged reef terrace on the Red Sea coast of Eritrea, which we date to the last interglacial (about 125 kyr ago) using U-Th mass spectrometry techniques on fossil corals. The geological setting of these artefacts shows that early humans occupied coastal areas and exploited near-shore marine food resources in East Africa by this time. Together with similar, tentatively dated discoveries from South Africa this is the earliest well-dated evidence for human adaptation to a coastal marine environment, heralding an expansion in the range and complexity of human behaviour from one end of Africa to the other. This new, wide-spread adaptive strategy may, in part, signal the onset of modern human behaviour, which supports an African origin for modern humans by 125 kyr ago.  相似文献   

13.
ESR dates for the hominid burial site of Es Skhul in Israel   总被引:6,自引:0,他引:6  
C B Stringer  R Grün  H P Schwarcz  P Goldberg 《Nature》1989,338(6218):756-758
The Middle East has been critical to our understanding of recent human evolution ever since the recovery of Neanderthal and early anatomically modern fossils from the caves of Tabun and Skhul (Mount Carmel) over 50 years ago. It was generally believed, on archaeological and morphological grounds, that middle eastern Neanderthals (such as those from Tabun, Amud and Kebara) probably dated from more than 50,000 years ago, whereas the earliest anatomically modern specimens (from Skhul and Qafzeh) probably dated from about 40,000 years. Recent thermoluminescence and electron spin resonance (ESR) determinations, however, have supported biostratigraphy in dating the Qafzeh deposits to an earlier part of the late Pleistocene, probably more than 90,000 years ago. These dates have been questioned on unspecified technical grounds, and it has also been argued that they create explanatory problems by separating the morphologically similar Qafzeh and Skhul samples by some 50,000 years, thus implying a long-term coexistence of early modern humans and Neanderthals in the area. Here we report the first radiometric dating analysis for Skhul, using ESR on bovine teeth from the hominid burial levels. Early uptake and linear uptake ages average 81 +/- 15 and 101 +/- 12 kyr respectively. These analyses suggest that the Skhul and Qafzeh samples are of a similar age and therefore it is possible that the presence of early modern humans in the area was episodic, rather than long-term during the early late Pleistocene.  相似文献   

14.
Wood B  Harrison T 《Nature》2011,470(7334):347-352
The relationships among the living apes and modern humans have effectively been resolved, but it is much more difficult to locate fossil apes on the tree of life because shared skeletal morphology does not always mean shared recent evolutionary history. Sorting fossil taxa into those that belong on the branch of the tree of life that leads to modern humans from those that belong on other closely related branches is a considerable challenge.  相似文献   

15.
因“在已灭绝的古人类的基因组和人类演化方面的发现”,斯万特·帕博获得2022年诺贝尔生理学或医学奖。回顾了人类起源的长久之问、生物测序技术的突破发展和帕博团队的科研历程,明确了其源于兴趣、攻坚克难的古DNA领域探索之路和丰硕成果:首次实现了对已灭绝古人类尼安德特人的全基因组测序,发现了未知古人类丹尼索瓦人,为人类的进化遗传学提供了新证据。帕博对人类进化遗传中基因流动探索的科研历程,展现了严谨的科学精神以及理想的科研生态;他的科研成果和理念,实现了古基因组学跨越学科与时代的价值,也引起了人类未来将去往何方的进一步思考。  相似文献   

16.
The human fossil assemblage from the Mladec Caves in Moravia (Czech Republic) has been considered to derive from a middle or later phase of the Central European Aurignacian period on the basis of archaeological remains (a few stone artefacts and organic items such as bone points, awls, perforated teeth), despite questions of association between the human fossils and the archaeological materials and concerning the chronological implications of the limited archaeological remains. The morphological variability in the human assemblage, the presence of apparently archaic features in some specimens, and the assumed early date of the remains have made this fossil assemblage pivotal in assessments of modern human emergence within Europe. We present here the first successful direct accelerator mass spectrometry radiocarbon dating of five representative human fossils from the site. We selected sample materials from teeth and from one bone for 14C dating. The four tooth samples yielded uncalibrated ages of approximately 31,000 14C years before present, and the bone sample (an ulna) provided an uncertain more-recent age. These data are sufficient to confirm that the Mladec human assemblage is the oldest cranial, dental and postcranial assemblage of early modern humans in Europe and is therefore central to discussions of modern human emergence in the northwestern Old World and the fate of the Neanderthals.  相似文献   

17.
Powerful masticatory muscles are found in most primates, including chimpanzees and gorillas, and were part of a prominent adaptation of Australopithecus and Paranthropus, extinct genera of the family Hominidae. In contrast, masticatory muscles are considerably smaller in both modern and fossil members of Homo. The evolving hominid masticatory apparatus--traceable to a Late Miocene, chimpanzee-like morphology--shifted towards a pattern of gracilization nearly simultaneously with accelerated encephalization in early Homo. Here, we show that the gene encoding the predominant myosin heavy chain (MYH) expressed in these muscles was inactivated by a frameshifting mutation after the lineages leading to humans and chimpanzees diverged. Loss of this protein isoform is associated with marked size reductions in individual muscle fibres and entire masticatory muscles. Using the coding sequence for the myosin rod domains as a molecular clock, we estimate that this mutation appeared approximately 2.4 million years ago, predating the appearance of modern human body size and emigration of Homo from Africa. This represents the first proteomic distinction between humans and chimpanzees that can be correlated with a traceable anatomic imprint in the fossil record.  相似文献   

18.
For the past two decades, the modern human origins debate has received significant interest from both the scientific community and the public. The two hypothe- ses “Out of Africa” and “Mutiregional evolution” are focuses of this debate[1-3]. In partic…  相似文献   

19.
One of the most hotly debated and frontal issues in paleoanthropology focuses on the origins of modern humans. Recently, an incomplete hominin mandible with a distinctly weaker mental protuberance than modern human and a great variety of coexisting fossil mammals were unearthed from the Homo sapiens Cave of Mulan Mountain, Chongzuo, Guangxi. The mammalian fauna from the Homo sapiens Cave characterized by the combination of Elephas kiangnanensis, first occurring Elephas maixmus, and Megatapirus augustus, and strikingly different from the Early Pleistocene Gigantopithecus fauna and the Middle Pleistocene Ailuropoda-Stogodon fauna of South China could be regarded as an early representive of the typical Asian elephant fauna. Faunal analysis, biostratigraphic correlation, and, most importantly, U-series dating all consistently support an estimate of ca. 110 ka for the age of the fossil Homo sapiens and coexisting mammalian fauna, that is, the early Late Pleistocene. The fauna is mainly made up of tropical-subtropical elements, but grassland elements have a much greater variety than forest elements, which probably indicates a drier climate at that time. This discovery of early Homo sapiens at the Mulan Mountain will play a significant role in the study of the origin and its environmental background of modern humans.  相似文献   

20.
P Pavlov  J I Svendsen  S Indrelid 《Nature》2001,413(6851):64-67
The transition from the Middle to the Upper Palaeolithic, approximately 40,000-35,000 radiocarbon years ago, marks a turning point in the history of human evolution in Europe. Many changes in the archaeological and fossil record at this time have been associated with the appearance of anatomically modern humans. Before this transition, the Neanderthals roamed the continent, but their remains have not been found in the northernmost part of Eurasia. It is generally believed that this vast region was not colonized by humans until the final stage of the last Ice Age some 13,000-14,000 years ago. Here we report the discovery of traces of human occupation nearly 40,000 years old at Mamontovaya Kurya, a Palaeolithic site situated in the European part of the Russian Arctic. At this site we have uncovered stone artefacts, animal bones and a mammoth tusk with human-made marks from strata covered by thick Quaternary deposits. This is the oldest documented evidence for human presence at this high latitude; it implies that either the Neanderthals expanded much further north than previously thought or that modern humans were present in the Arctic only a few thousand years after their first appearance in Europe.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号