首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 78 毫秒
1.
给出k-行正交矩阵和中心对称矩阵的概念,并着重研究了k-行正交矩阵的中心对称性,得到以下主要结论:k-行正交矩阵是中心对称矩阵;k-行正交矩阵的转置矩阵以及它的行转置和列转置矩阵都是中心对称矩阵;k-行正交矩阵的逆矩阵和伴随矩阵也是中心对称矩阵;若干个k-行正交矩阵的和仍是中心对称矩阵.  相似文献   

2.
给出行反正交矩阵的概念,并讨论其行列式、可逆性、迹、特征值等问题,得到行反正交矩阵的行列式、逆矩阵、特征值与迹;并得出了以下主要结果:行反正交矩阵是行列对称矩阵,它本身以及它的行转置和列转置矩阵都是可逆矩阵;行反正交矩阵的转置矩阵以及它的行转置和列转置矩阵都仍是行反正交矩阵;行反正交矩阵的行转置矩阵的逆矩阵等于其逆矩阵的行转置,其列转置矩阵的逆矩阵等于其逆矩阵的列转置;它的行转置矩阵的转置等于其转置矩阵的行转置,它的列转置矩阵的转置等于其转置矩阵的列转置.  相似文献   

3.
给出k-行正交矩阵的概念,讨论其行列式、可逆性、迹、特征值等问题,得到k-行正交矩阵的行列式、逆矩阵、特征值与迹,得出了以下主要结果:k-行正交矩阵是行列对称矩阵,它本身以及它的行转置和列转置矩阵都是可逆矩阵;k-行正交矩阵的转置矩阵以及它的行转置和列转置矩阵仍都是k-行正交矩阵;k-行正交矩阵的行转置矩阵的逆矩阵等于其逆矩阵的行转置,其列转置矩阵的逆矩阵等于其逆矩阵的列转置;它的行转置矩阵的转置等于其转置矩阵的行转置,它的列转置矩阵的转置等于其转置矩阵的列转置。  相似文献   

4.
给出行正交矩阵和中心对称矩阵的概念,并讨论行正交矩阵的可逆性、中心对称性等问题;结果表明:行正交矩阵的转置矩阵仍是行正交矩阵;行正交矩阵是中心对称矩阵;行正交矩阵的转置矩阵以及它的行转置和列转置矩阵都是中心对称矩阵;其逆矩阵和伴随矩阵也是中心对称矩阵;若干个行正交矩阵的和仍是中心对称矩阵。  相似文献   

5.
给出行正交矩阵的概念,并讨论行正交矩阵的行列式、可逆性、特征值、迹等问题,得到行正交矩阵的行列式等于正负1、行正交矩阵的逆矩阵和伴随矩阵仍是行正交矩阵以及一些等价条件.  相似文献   

6.
将正交矩阵推广为行(列)正交矩阵以及行列正交矩阵,对它们的性质及应用进行了探讨,得到了一些较好的结果。  相似文献   

7.
关于次正交矩阵   总被引:2,自引:1,他引:1  
给出了次正交矩阵的有关定义及次正交矩阵的一些性质。  相似文献   

8.
利用m-并元加性群(m是素数),本文提出了行正交矩阵的一种扩大法.利用这种扩大法可以得到一系列延续矩阵.  相似文献   

9.
中心与反中心对称矩阵可逆的充条件   总被引:1,自引:0,他引:1  
给出了中心与反中心的对称矩阵可逆的一个充要条件。  相似文献   

10.
通过研究中心对称正交矩阵的结构和性质,并利用奇异值分解和谱分解,得到了反问题有解的充分必要条件,并给出了反问题解的表达式。  相似文献   

11.
本文给出了广义对称 (反对称 )矩阵和广义正交矩阵的概念 ,讨论了它们的性质及相互之间的关系。  相似文献   

12.
给出了对称中心对称矩阵正定的两个充要条件.  相似文献   

13.
给出O-广义(反)对称矩阵、O-广义正交矩阵的定义,研究了它们的性质及两者之间的关系,特别将正交矩阵的广义Gayley分解推广到了O-广义正交矩阵上;利用两者的关系给出了一种矩阵方程的解及解的表示式,获得了许多新结果.  相似文献   

14.
给出了r-块置换因子循环矩阵的定义,借助于Kronecker积讨论了r-块置换因子循环矩阵的基本性质,并证明了r-块置换因子循环矩阵具有可交换性,即AB=BA。然后在r-块置换因子循环矩阵对角化的基础上给出了其行列式的计算方法以及非奇异矩阵的充要条件。最后,给出了非奇异的r-块置换因子循环矩阵的逆矩阵求法。  相似文献   

15.
考虑拟行(列)对称矩阵的Schur分解、 正交对角分解、 Hermite矩阵分解和广义逆, 给出拟行(列)对称矩阵的Schur分解、 正交对角分解、 Hermite矩阵分解和广义逆的计算公式. 实例计算结果表明, 该方法既减少了计算量与存储量, 又不会降低数值精度.  相似文献   

16.
行转置矩阵与列转置矩阵   总被引:1,自引:0,他引:1  
提出了行(列)转置矩阵与行(列)反对称矩阵的概念,研究了它们的性质,获得了一些新的结果,给出了行(列)反对称矩阵的秩分解公式,它们可极大地减少行(列)反对称矩阵的秩分解的计算量与存储量,并且不会丧失数值精度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号