首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The chemical composition of ground waters and stream waters is thought to be determined primarily by weathering of parent rock. In relatively young soils such as those occurring in most temperate ecosystems, dissolution of primary minerals by carbonic acid is the predominant weathering pathway that liberates Ca2+, Mg2+ and K+ and generates alkalinity in the hydrosphere. But control of water chemistry in old and highly weathered soils that have lost reservoirs of primary minerals (a common feature of many tropical soils) is less well understood. Here we present soil and water chemistry data from a 10,000-hectare watershed on highly weathered soil in the Brazilian Amazon. Streamwater cation concentrations and alkalinity are positively correlated to each other and to streamwater discharge, suggesting that cations and bicarbonate are mainly flushed from surface soil layers by rainfall rather than being the products of deep soil weathering carried by groundwater flow. These patterns contrast with the seasonal patterns widely recognized in temperate ecosystems with less strongly weathered soils. In this particular watershed, partial forest clearing and burning 30 years previously enriched the soils in cations and so may have increased the observed wet season leaching of cations. Nevertheless, annual inputs and outputs of cations from the watershed are low and nearly balanced, and thus soil cations from forest burning will remain available for forest regrowth over the next few decades. Our observations suggest that increased root and microbial respiration during the wet season generates CO2 that drives cation-bicarbonate leaching, resulting in a biologically mediated process of surface soil exchange controlling the streamwater inputs of cations and alkalinity from these highly weathered soils.  相似文献   

2.
Derry LA  Kurtz AC  Ziegler K  Chadwick OA 《Nature》2005,433(7027):728-731
Silicon has a crucial role in many biogeochemical processes--for example, as a nutrient for marine and terrestrial biota, in buffering soil acidification and in the regulation of atmospheric carbon dioxide. Traditionally, silica fluxes to soil solutions and stream waters are thought to be controlled by the weathering and subsequent dissolution of silicate minerals. Rates of mineral dissolution can be enhanced by biological processes. But plants also take up considerable quantities of silica from soil solution, which is recycled into the soil from falling litter in a separate soil-plant silica cycle that can be significant in comparison with weathering input and hydrologic output. Here we analyse soil water in basaltic soils across the Hawaiian islands to assess the relative contributions of weathering and biogenic silica cycling by using the distinct signatures of the two processes in germanium/silicon ratios. Our data imply that most of the silica released to Hawaiian stream water has passed through the biogenic silica pool, whereas direct mineral-water reactions account for a smaller fraction of the stream silica flux. We expect that other systems exhibiting strong Si depletion of the mineral soils and/or high Si uptake rates by biomass will also have strong biological control on silica cycling and export.  相似文献   

3.
大气氮沉降是酸雨的主要成因之一,由于人为活动使得全球范围内的大气氮沉降日益增加。当大气氮沉降量超过森林生态系统的需求时,氮沉降会淋洗出植物体内的养分,导致叶片过早脱落,还会降低植物的抗性;氮沉降能引起土壤酸化,同时造成土壤盐基离子淋失。  相似文献   

4.
美东地区的罗德河流域遭受着严重的酸沉降侵蚀.在酸性条件下,铝从土壤中大量溶解并迁移到水环境中.地表水中升高的铝浓度对鱼类产生毒害,监测地表水和土壤水中的铝形态及浓度变化已成为问题的关键.本文报导了用化学平衡模式计算法分析美东地区罗德河流域地下水中的铝形态分布,获得了有价值的结论  相似文献   

5.
Arctic microorganisms respond more to elevated UV-B radiation than CO2   总被引:5,自引:0,他引:5  
Surface ultraviolet-B radiation and atmospheric CO2 concentrations have increased as a result of ozone depletion and burning of fossil fuels. The effects are likely to be most apparent in polar regions where ozone holes have developed and ecosystems are particularly sensitive to disturbance. Polar plant communities are dependent on nutrient cycling by soil microorganisms, which represent a significant and highly labile portion of soil carbon (C) and nitrogen (N). It was thought that the soil microbial biomass was unlikely to be affected by exposure of their associated plant communities to increased UV-B. In contrast, increasing atmospheric CO2 concentrations were thought to have a strong effect as a result of greater below-ground C allocation. In addition, there is a growing belief that ozone depletion is of only minor environmental concern because the impacts of UV-B radiation on plant communities are often very subtle. Here we show that 5 years of exposure of a subarctic heath to enhanced UV-B radiation both alone and in combination with elevated CO2 resulted in significant changes in the C:N ratio and in the bacterial community structure of the soil microbial biomass.  相似文献   

6.
森林土壤是温室气体重要的源和汇。探讨不同森林管理和全球大气变化下土壤温室气体通量特征,为有效减少温室气体排放及森林可持续管理等提供参考。笔者从森林土壤温室气体(forest soil green house gases)、森林管理(forest mangement)和全球大气变化(global atmospheric change)3个关键研究点,查阅近年来相关研究成果,归纳森林管理和全球大气变化下土壤温室气体通量的一般性模式。CO2、CH4和N2O是3种重要温室气体,其通量间存在协同、消长和随机型耦合关系。森林管理如火烧、采伐和造林等显著影响土壤温室气体通量。一般情况下,火烧导致土壤N2O通量降低,CH4吸收量增加,CO2通量因火烧类型、火烧强度、生态系统类型不同出现增加、减低和无影响3种结果; 采伐通常导致土壤CO2、CH4和N2O排放增加; 造林可使土壤CO2排放减少,对N2O和CH4通量的影响随生态系统类型、造林树种等而改变。全球大气变化如CO2浓度升高、氮沉降和气温升高影响森林土壤温室气体通量。通常,CO2浓度升高导致土壤CO2和N2O排放量增加,CH4吸收量降低; 氮沉降促进土壤N2O排放、抑制CH4吸收。气温升高导致土壤CO2和N2O排放增加。森林管理和全球大气变化对土壤温室气体通量的综合影响是非叠加的,有效的森林管理可能改变土壤温室气体通量对全球大气变化的响应。  相似文献   

7.
Foster GL  Vance D 《Nature》2006,444(7121):918-921
Chemical weathering of the continents is central to the regulation of atmospheric carbon dioxide concentrations, and hence global climate. On million-year timescales silicate weathering leads to the draw-down of carbon dioxide, and on millennial timescales chemical weathering affects the calcium carbonate saturation state of the oceans and hence their uptake of carbon dioxide. However, variations in chemical weathering rates over glacial-interglacial cycles remain uncertain. During glacial periods, cold and dry conditions reduce the rate of chemical weathering, but intense physical weathering and the exposure of carbonates on continental shelves due to low sea levels may increase this rate. Here we present high-resolution records of the lead isotope composition of ferromanganese crusts from the North Atlantic Ocean that cover the past 550,000 years. Combining these records with a simple quantitative model of changes in the lead isotope composition of the deep North Atlantic Ocean in response to chemical weathering, we find that chemical weathering rates were two to three times lower in the glaciated interior of the North Atlantic Region during glacial periods than during the intervening interglacial periods. This decrease roughly balances the increase in chemical weathering caused by the exposure of continental shelves, indicating that chemical weathering rates remained relatively constant on glacial-interglacial timescales. On timescales of more than a million years, however, we suggest that enhanced weathering of silicate glacial sediments during interglacial periods results in a net draw-down of atmospheric carbon dioxide, creating a positive feedback on global climate that, once initiated, promotes cooling and further glaciation.  相似文献   

8.
广西崇左市白头叶猴保护区土壤研究   总被引:1,自引:0,他引:1  
在现代的南亚热带高温多雨的气候作用下,赤红壤继续处于高度淋溶状态而发育成盐基高度不饱和,酸性较强,有机质量较低,土壤肥力较差;而处于岩溶山地的坡麓和谷地中的红粘土,因受山上的富含钙镁的岩溶水淀积复钙和淋溶脱钙的反复作用发育形成红色石灰土或复钙红粘土.这在广西崇左市白头叶猴保护区区的濑湍片、板利片和岜盆片的峰林谷地中和河...  相似文献   

9.
Atmospheric carbon dioxide concentrations before 2.2 billion years ago   总被引:5,自引:0,他引:5  
Rye R  Kuo PH  Holland HD 《Nature》1995,378(6557):603-605
The composition of the Earth's early atmosphere is a subject of continuing debate. In particular, it has been suggested that elevated concentrations of atmospheric carbon dioxide would have been necessary to maintain normal surface temperatures in the face of lower solar luminosity in early Earth history. Fossil weathering profiles, known as palaeosols, have provided semi-quantitative constraints on atmospheric oxygen partial pressure (pO2) before 2.2 Gyr ago. Here we use the same well studied palaeosols to constrain atmospheric pCO2 between 2.75 and 2.2 Gyr ago. The observation that iron lost from the tops of these profiles was reprecipitated lower down as iron silicate minerals, rather than as iron carbonate, indicates that atmospheric pCO2 must have been less than 10(-1.4) atm--about 100 times today's level of 360 p.p.m., and at least five times lower than that required in one-dimensional climate models to compensate for lower solar luminosity at 2.75 Gyr. Our results suggest that either the Earth's early climate was much more sensitive to increases in pCO2 than has been thought, or that one or more greenhouse gases other than CO2 contributed significantly to the atmosphere's radiative balance during the late Archaean and early Proterozoic eons.  相似文献   

10.
Steven S Perakis  Lars O Hedin 《Nature》2002,415(6870):416-419
Conceptual and numerical models of nitrogen cycling in temperate forests assume that nitrogen is lost from these ecosystems predominantly by way of inorganic forms, such as nitrate and ammonium ions. Of these, nitrate is thought to be particularly mobile, being responsible for nitrogen loss to deep soil and stream waters. But human activities-such as fossil fuel combustion, fertilizer production and land-use change-have substantially altered the nitrogen cycle over large regions, making it difficult to separate natural aspects of nitrogen cycling from those induced by human perturbations. Here we report stream chemistry data from 100 unpolluted primary forests in temperate South America. Although the sites exhibit a broad range of environmental factors that influence ecosystem nutrient cycles (such as climate, parent material, time of ecosystem development, topography and biotic diversity), we observed a remarkably consistent pattern of nitrogen loss across all forests. In contrast to findings from forests in polluted regions, streamwater nitrate concentrations are exceedingly low, such that nitrate to ammonium ratios were less than unity, and dissolved organic nitrogen is responsible for the majority of nitrogen losses from these forests. We therefore suggest that organic nitrogen losses should be considered in models of forest nutrient cycling, which could help to explain observations of nutrient limitation in temperate forest ecosystems.  相似文献   

11.
Palmer SM  Driscoll CT 《Nature》2002,417(6886):242-243
The mobilization of aluminium from acidic forest soils is arguably the most ecologically important consequence of acid deposition in the environment because of its adverse effects on soils, forest vegetation and surface water. Here we show that there has been a significant decline in the concentrations of aluminium species in soil solutions at medium-to-high elevations in a northern hardwood forest in the United States in response to decreasing acidic deposition. Streamwater aluminium concentrations have also fallen and, if this rate of recovery persists, will within 10 years no longer pose a threat to fish.  相似文献   

12.
The ^87Sr/^86Sr ratios of silicate (acid-insoluble,AI,) and carbonate (acid-soluble,AS) of the lake sediments from the Daihai Lake ,Inner Mongolia since the last 500 years are measured respectively ,indicationg that chemical weathering of silicate minerals was in an early stage since the Little Ice Age within the Daihai watershed by combination with mineral constitute,Rb/Sr ratio and CaCO3 content in the sediments,During the Little Ice Age maximum,an evident peak in the ^87 Sr/^86Sr ratios of both silicate and carbonate in sediments suggests that a cold climate condition is unfavorable to dissolving radiogenic stontium from silcate minerals ,Meanwhile,the variation of ^87 Sr/^86Sr ratios of silicate and carbonate also reflects a projected warming climate favorable to intensifying chemical weathering after the Little Ice Age ,Consequently,the ^87 Sr/^86Sr ratio of both silicate and carbonate in inland lake sediment can be used as an effective proxy of the past climate in single watershed.  相似文献   

13.
通过野外模拟试验,研究氮沉降增加以及短期氮沉降恢复对杉木人工林土壤物理性质、pH值、NH4+-N、NO3--N、交换性钙、镁的影响。试验设计为5种处理,分别为N0(0kg·hm-2·a-1)、N1(60kg·hm-2·a-1)、N2(120kg·hm-2·a-1)、N3(240kg·hm-2·a-1)、Nr(氮沉降恢复),每个处理重复3次。以尿素[CO(NH2)2]作为氮源,每月以溶液方式对林地进行喷施。通过3年的处理后发现,氮沉降使土壤容重降低;0-20cm土层pH值出现短期的突增,而20-60cm则随氮沉降量的增大其酸化程度也越大;0-40cm土层中土壤NH4+-N含量从高到低的顺序比较为:N3>N2>N0>N1;40-60cm土层为:N3>N2>N1>N0,;土层中NO3--N含量从高到低的顺序为:N3>N2>N0>N1。氮沉降促进了土壤交换性钙和镁的增加。短期的氮沉降恢复过程中,土壤NH4+-N和NO3—N出现了显著的恢复特征;而土壤容重、pH值、交换性钙、镁也出现了一些恢复现象,但其特征并不显著。  相似文献   

14.
Schlesinger WH  Lichter J 《Nature》2001,411(6836):466-469
The current rise in atmospheric CO2 concentration is thought to be mitigated in part by carbon sequestration within forest ecosystems, where carbon can be stored in vegetation or soils. The storage of carbon in soils is determined by the fraction that is sequestered in persistent organic materials, such as humus. In experimental forest plots of loblolly pine (Pinus taeda) exposed to high CO2 concentrations, nearly half of the carbon uptake is allocated to short-lived tissues, largely foliage. These tissues fall to the ground and decompose, normally contributing only a small portion of their carbon content to refractory soil humic materials. Such findings call into question the role of soils as long-term carbon sinks, and show the need for a better understanding of carbon cycling in forest soils. Here we report a significant accumulation of carbon in the litter layer of experimental forest plots after three years of growth at increased CO2 concentrations (565 microl l(-1)). But fast turnover times of organic carbon in the litter layer (of about three years) appear to constrain the potential size of this carbon sink. Given the observation that carbon accumulation in the deeper mineral soil layers was absent, we suggest that significant, long-term net carbon sequestration in forest soils is unlikely.  相似文献   

15.
植物与土壤之间相互反馈的格局、过程与机制,不但是决定生态系统结构、功能及过程的关键科学问题,而且是陆地生态系统响应全球变化的重要组成部分。基于目前国内外研究现状,从养分循环角度剖析“植物-土壤”间的反馈效应,探明相互反馈在空间尺度(根面、根际、种类、生态系统以及区域等)与时间尺度(秒至千年)上的级联效应及其变化格局;阐明根际、植物种类、生态系统及区域地理等水平上“植物-土壤”的相互反馈机制,重点揭示根系分泌、共生、生长及代谢的根际界面过程对植物水分/养分吸收与土壤物理学修饰的调控机制,剖析“植物种类-凋落物化学-土壤生物-土壤有机质”相互作用对地上-地下养分循环过程的驱动机制,运用“上行-下行控制理论及腐屑食物网模型”揭示地上-地下生物群落交互作用的过程与机制,以及土壤地质演变(岩石风化模式、土壤形成模式及土壤养分格局的变化)与区域植被演替(优势种更替及植被分布模式、地上-地下凋落物输入格局等的变化)相互反馈的过程与机制;从“植物-土壤”相互反馈的理论视角,分析生态退化与恢复、外来物种生态入侵、大气氮沉降、二氧化碳浓度升高以及植物多样性减少等全球生态问题的特征、形成机制以及可能的应对策略,揭示生态系统“地上-地下”相互反馈的生态学过程,以及陆地生态系统对全球生态环境变化的响应特征与机理。  相似文献   

16.
Most terrestrial carbon sequestration at mid-latitudes in the Northern Hemisphere occurs in seasonal, montane forest ecosystems. Winter respiratory carbon dioxide losses from these ecosystems are high, and over half of the carbon assimilated by photosynthesis in the summer can be lost the following winter. The amount of winter carbon dioxide loss is potentially susceptible to changes in the depth of the snowpack; a shallower snowpack has less insulation potential, causing colder soil temperatures and potentially lower soil respiration rates. Recent climate analyses have shown widespread declines in the winter snowpack of mountain ecosystems in the western USA and Europe that are coupled to positive temperature anomalies. Here we study the effect of changes in snow cover on soil carbon cycling within the context of natural climate variation. We use a six-year record of net ecosystem carbon dioxide exchange in a subalpine forest to show that years with a reduced winter snowpack are accompanied by significantly lower rates of soil respiration. Furthermore, we show that the cause of the high sensitivity of soil respiration rate to changes in snow depth is a unique soil microbial community that exhibits exponential growth and high rates of substrate utilization at the cold temperatures that exist beneath the snow. Our observations suggest that a warmer climate may change soil carbon sequestration rates in forest ecosystems owing to changes in the depth of the insulating snow cover.  相似文献   

17.
过多的水盐含量是季冻区盐渍土产生变形的根本原因,而电渗可以通过驱动盐离子加速土体的排水固结,同时也会导致阴极土体含水率过大,进而产生严重冻胀变形。本文采用自制装置进行电渗联合氯化钙的室内试验,研究不同氯化钙含量(质量分数为0、5%、10%、15%的氯化钙溶液)对硫酸钠盐渍土变形的影响,结果表明:电渗联合氯化钙可以增大硫酸钠盐渍土的电导率,进而加速土中水的排出,相较于仅电渗处理,土体最终电渗排水量增加35%以上;硫酸钠盐渍土中过量的Na+和SO42-在电场力的驱动下分别向阴阳两极迁移,大部分随电渗水流排出,从而降低土体中含盐量,减小低温下土体冻胀盐胀变形;在电场力作用下,Ca2+迁移到阴极并与水解产生的OH-结合形成Ca(OH)2胶结物,大大增强土颗粒间的粘结力,而多余的Ca2+与可溶性硅酸盐发生反应形成水合硅酸钙(C-S-H),并沉积在土颗粒表面,增加土颗粒间的摩擦力,有效降低阴极土体的冻胀变形;经电渗-氯化钙处理后的硫酸钠盐渍土,微观结构更加密实,抵抗冻胀盐胀变形能力显著增强,其中以质量分数10%的氯化钙溶液的加固效果为最佳,相较于仅作电渗处理土体,最终排水量提高了近70%,阴极土体...  相似文献   

18.
重庆地区 20 年间紫色土酸化研究   总被引:10,自引:0,他引:10  
以酸沉降危害严重的重庆市为研究区域,对其主要农业土壤--紫色土进行大面积土壤酸化调查,与20世纪80年代中期重庆市土壤普查的保留样品进行对比分析研究,以探讨近20年来酸沉降对紫色土的危害程度.结果表明:与20世纪80年代中期比较,目前重庆市农用地和蔬菜地中的石灰性紫色土减少,而酸性和强酸性紫色土增加;同时,农用地的土壤交换性酸和交换性铝均有一定程度的上升.证实了在近20年的酸沉降影响下,重庆市大部分紫色土已发生酸化,且酸化程度日益加深.  相似文献   

19.
Tao  Zhen  Gao  QuanZhou  Wang  ZhenGang  Zhang  ShengHua  Xie  ChenJi  Lin  PeiSong  Ruan  XiaoBing  Li  ShuHong  Mao  HaiRuo 《科学通报(英文版)》2011,56(35):3774-3782
The fluvial geochemistry of the mainstream and tributaries of the Zengjiang River was investigated,and the mass balance approach and deduction methods were used to estimate the uptake of atmospheric CO2 through rock chemical weathering.The results showed that the chemical runoff mainly consisted of HCO3-,Ca2+,Na+,and dissolved Si,and that silicate mineral weathering was significant,but carbonate mineral weathering was a minor source of dissolved loads in the Zengjiang River basin because of the low amount o...  相似文献   

20.
Physical and chemical dynamics at Jiangjia Spring (JJS), the outlet of the Qingmuguan karst groundwater system in Chongqing, were monitored in situ during rainfall events to acquire a series of high-resolution data. Principal component analysis (PCA) was employed to identify the sources of chemical compositions in the karst groundwater. The coefficients of variations (CVs) of the physical and chemical data of JJS were utilized to interpret the migration path of the chemical compositions. The results showed that water-rock interactions, agricultural activities, and soil erosion were the main sources of the groundwater chemical compositions. Ions of potassium, sodium, nitrate, chloride and phosphate from agricultural activities together with ions of calcium, magnesium, strontium and bicarbonate derived from carbonate dissolution appear to be stored and regulated by the karst unsaturated zone in features such as fissures, pores and solution cracks. The concentrations of the ions remained relatively stable and they showed low CVs owing to their migration by diffuse flow to recharge the underground river. In contrast, concentrations of ions such as total iron, total manganese and aluminum from soil erosion were unstable and showed high CVs owing to their migration by overland flow to recharge the underground river directly via sinkholes. During heavy rainfall events, the nutrients from agricultural activities and sediment from soil erosion could quickly impair the aquatic ecosystem and pose serious threats to water quality. Therefore, it is necessary to reinforce management of the ecological system for better control of the influx of mass nutrients into the karst aquifer system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号