共查询到19条相似文献,搜索用时 93 毫秒
1.
梁景伟 《中国石油大学学报(自然科学版)》2001,25(3)
对于n阶半正定矩阵A ,B的初等和完全对称函数 ,得到如下的不等式 : Er[(AB) m]≤Er(AmBm) , hr[(AB) m]≤hr(AmBm) , Er[AαB1-α]≤ [Er(A) ]α[Er(B) ]1-α, hr[AαB1-α]≤ [hr(A) ]α[hr(B) ]1-α.其中 ,m是任意正整数 ,0≤α≤ 1,Er(A) ,hr(A)分别为半正定矩阵A的r阶初等和完全对称函数。当A ,B都是正定矩阵时 ,有 E2 r(A B)≤Er(A)Er(B) , h2 r(A B)≤hr(A)hr(B) .其中 ,A B =A1/ 2 (A-1/ 2 BA-1/ 2 ) 1/ 2 A1/ 2 称为A与B的几何平均矩阵 相似文献
2.
梁景伟 《石油大学学报(自然科学版)》2001,25(3):100-102,106
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式,Er[(AB)^m]≤Er(A^mB^m),hr[(AB)^m]≤(A^mB^m),Er[A^aB^1-a]≤[Er(A]^a[Er(B)]^1-A,HR[A^aB^1-a]≤[hr(A)]^a[hr(B)]^1-a.其中,m是任意正整数,0≤a≤1,Er(A),hr(A)分别为半下定矩阵A的r阶初等和完全对称函数。当A,B都是正定矩阵时,有E^2r(A#B)≤Er(A)Er(B),h^2r(A#B)≤hr(A)hr(B),其中,A#B=A^1/2BA^-1/2)^1/2A^1/2称为A与B的几何平均矩阵。 相似文献
3.
宋乾坤 《重庆师范学院学报》2002,19(3):10-12
在矩阵的次转置矩阵、次正定复矩阵和半次正定复矩阵概念基础上,给出了次正定复矩阵行列式的一些不等式,即次正定Herimite矩阵与半次正定矩阵之间的行列式模的关系。 相似文献
4.
刘建华 《重庆大学学报(自然科学版)》1989,(5)
本文首先证明了关于Hermite矩阵迹的一个不等式,在此基础上,得出了关于半正定矩阵迹的几何-算术平均不等式,特别地,该不等式对实对称半正定阵也是成立的,这就给出了文〔1〕中,R.Bellman所提问题的一个回答。 相似文献
5.
刘桂香 《大庆师范学院学报》1997,17(4):7-10
本文给出了次对称半正定(正定)矩阵的一个充要条件,沟通了次对称半正定(正定)矩阵与对称半正定(正定)矩阵、次半正定(正定)矩阵与亚半正定(正定)矩阵,简化了次半正定(正定)矩阵的讨论。并着重改进了文〔3〕中的两个定理,纠正了文〔3〕中的错误。 相似文献
6.
7.
8.
9.
设 A、B 与 C 是同阶的半正定矩阵,则 tr(ABC)≤trA·trB·trC,等号成立当且仅当 A、B 与 C 有个为零矩阵,或者 raukA=1且 B 与 C 都是 A 的倍数矩阵。 相似文献
10.
11.
续铁权 《成都大学学报(自然科学版)》2000,19(2):15-18
证明了函数 Ek( 1 -x)Ek(x) 和 Ek( 1 +x)Ek( 1 -x) 是集合A、B上的Schur 凸函数 ,并建立了相关的不等式。 相似文献
12.
N阶矩阵A称为完全正的,如果A能分解成A=b1bt1+…+bmbtm,其中bj(j=1,2,…,m)为n维非负向量。满足此式的最小的正整数m称为A的分解指数。本文证明了一个秩≤2的非负半正定矩阵一定为完全正,并给出了一个秩为3的非负半正定矩阵为完全正的一个充分条件。 相似文献
13.
14.
郭伟 《四川师范大学学报(自然科学版)》2009,32(4)
给出全对称矩阵中具有轴对称结构矩阵(延拓矩阵)的满秩分解及Moore-Penrose逆与原矩阵的满秩分解及Moore-Penrose逆的定量关系,从而可节省这类具有该对称结构矩阵的满秩分解及Moore-Penrose逆的计算量和存储量. 相似文献
15.
对称半正定矩阵的二级多分裂 总被引:1,自引:0,他引:1
张华隆 《同济大学学报(自然科学版)》2003,31(10):1232-1236
考虑由二级多分裂迭代法求出大规模线性系统方程并行解的问题 .通过研究二级方法与多分裂方法两者之间的相互联系之后 ,借助于矩阵的对角补偿约化矩阵 ,较深入地讨论了对称半正定矩阵的二级多分裂方法 .首先分析一般矩阵的二级多分裂方法的特征与收敛性 ;然后给出对称半正定矩阵二级多分裂方法的构造过程 ,并在此结果的基础上证明了该二级多分裂迭代法在分裂是正则与弱正则的条件下对任意的初始向量都是收敛的 相似文献
16.
一组对称函数的不等式 总被引:1,自引:0,他引:1
续铁权 《首都师范大学学报(自然科学版)》2004,25(1):7-11
利用建立不等式的降维法,证明了一组对称函数的不等式.主要结果是:对于,I=(0,1),g(t)=I/t,(x1,…,xn)∈I^n,Em(x1,…,xn)是初等对称函数,记s=a∑i=1xi,↓Am∈N,↓An≥m且n≥3,若0<s≤,则Em[g(x1),…,g(xn)]≥Cn^m[g(s/n)]^m。 相似文献
17.
18.
本文给出了用低阶矩阵的广义对称正定性来判定高阶矩阵的广义对称正定性的判定定理,并且给出了矩阵方程AX=B的反问题在广义对称正定矩阵类中解存在的充要条件及解的一般形式。 相似文献
19.