首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
对于n阶半正定矩阵A,B的初等和完全对称函数,得到如下的不等式,Er[(AB)^m]≤Er(A^mB^m),hr[(AB)^m]≤(A^mB^m),Er[A^aB^1-a]≤[Er(A]^a[Er(B)]^1-A,HR[A^aB^1-a]≤[hr(A)]^a[hr(B)]^1-a.其中,m是任意正整数,0≤a≤1,Er(A),hr(A)分别为半下定矩阵A的r阶初等和完全对称函数。当A,B都是正定矩阵时,有E^2r(A#B)≤Er(A)Er(B),h^2r(A#B)≤hr(A)hr(B),其中,A#B=A^1/2BA^-1/2)^1/2A^1/2称为A与B的几何平均矩阵。  相似文献   

2.
对于n阶半正定矩阵A ,B的初等和完全对称函数 ,得到如下的不等式 : Er[(AB) m]≤Er(AmBm) , hr[(AB) m]≤hr(AmBm) , Er[AαB1-α]≤ [Er(A) ]α[Er(B) ]1-α, hr[AαB1-α]≤ [hr(A) ]α[hr(B) ]1-α.其中 ,m是任意正整数 ,0≤α≤ 1,Er(A) ,hr(A)分别为半正定矩阵A的r阶初等和完全对称函数。当A ,B都是正定矩阵时 ,有 E2 r(A B)≤Er(A)Er(B) , h2 r(A B)≤hr(A)hr(B) .其中 ,A B =A1/ 2 (A-1/ 2 BA-1/ 2 ) 1/ 2 A1/ 2 称为A与B的几何平均矩阵  相似文献   

3.
如果λ_1,…,λ_n是对称矩阵A的特征值,P. Tarazaga证明了|tr(A)/n-λ_i|≤[(n-1)/n(‖A‖_F~2-tr(A)~2/n)]~(1/2)对λ_i,i=1,…,n。本文中得到了一个等式成立的充分必要条件,由此给出一类特殊对称矩阵特征值的计算方法,而且证明了下面的定理:如果对称正定矩阵A仅有k个特征值大于或等于αtr(A),0<α<1,则tr(A)/‖A‖_F≥P_k(α)~(1/2),其中P_k(α)~(-1)=[1-(k-1)α]~2+(k-1)α~2,进而得到正定对称矩阵每一个特征值的上界估计。  相似文献   

4.
关于Bellman不等式的注记   总被引:6,自引:0,他引:6  
本文证明了关于矩阵迹的七个命题:1.trAB≤(trA~2)~(1/2)·(trB~2)~(1/2),A′=A,B′=B,且等式成立A=kB 或B=kA(k≥0)。2.(tr(A+B)~2)~(1/2)≤(trA~2)~(1/2)+(trB~2)~(1/2),A′=A,B′=B.且等式成立A=kB 或B=kA(k≥0)。3.trAB≤tr((A+B)/2)~2,A′=A,B′=B,且等式成立A=B。4.trA~2≤(trA)~2,A 半正定,且等式成立rk(A)≤1。5.trAB≤(trA)(trB),A,B 半正定,且等号成立(?)A=0或B=0或A=kB(k>0)且rk(A)=rk(B)=1。6.tr(AB)~2≤trA~2B~2,A′=A,B′=B,且等式成立AB=BA。7.tr(AB)~2≤(trAB)~2其中A,B 为正定阵.A=TT′,B=QQ′,且等号成立rk(C)≤1,其中C=(T′Q)(T′Q)′。  相似文献   

5.
对于n阶半正定Hermiter矩阵A和B及自然数m,本文证明了不等式:tr(A~(1/2)BA~(1/2))~(m/2)(B~(1/2)AB~(1/2))~(m/2)≤tr(AB)~m≤tr(AB~2A)~(m/2)特别当m=2~K时,Bellman猜想成立,即有tr(AB)~(2k)≤trA~(2k)B~(2k)  相似文献   

6.
<正> 最近[1]证明了,当A、B同为实对称矩阵时,有t_r[(AB)~2~m(AB)~τ~(2m)]≤t_r[(AB)(AB)~T]~(2m)≡t_r(A~2B~2)~2~m (1)这里m为任意自然数(见[1]的定理3的b)[1]依(1)提出一个猜想:  相似文献   

7.
本文首先讨论正规矩阵为亚正定的特征;然后论述了亚正定矩阵的一般积、Kronecker积以及Hadamard积仍为亚正定的条件。定义1 设A为实方阵,对任意非零向量x,有x Ax>0;称A为亚正定的。定义2 设A∈R~(n×n),A~ΓA=AA~Γ;则称A为正规矩阵。定义3 A、B为同阶实方阵,A可逆,方程|λA-B|=0的解为B相对A的特征根,显然它们是A和B确定的。定义4 A=(α)(?)×,B=(b_i)_m×m都是实阵;则m·n阵方阵(α_(ij)·B)_(m×m)为A与B的Kronecker积,记为AB。  相似文献   

8.
1980年,Bellman,R.在文〔1〕中证明了下面的不等式 tr(AB)≤{tr(A~2)tr(B~2)}~(1/2) (1) 2tr(AB)≤tr(A~2)+tr(B~2) (2)这里A,B是同阶正定矩阵。 本文得到了与(1)、(2)类似的不等式 tr((AB)~m)≤{tr(A~(2m))tr(B~(2m))}~(1/2) (3) 2tr((AB)~m)≤tr(A~(2m))+tr(B~(2m)) (4) 其中A、B是同阶实对称矩阵,m=2~k(k为非负整数)  相似文献   

9.
关于除环上矩阵秩的几个等式   总被引:1,自引:0,他引:1  
推广和改进了文[2]的一些结果,建立了除环K上关于幂等矩阵秩的几个等式:(i)设A,B∈Pn(K),则r(A+B-AB)=r-r(B)=r(B)+r[AB B0]-r(B)=r(B)+r[(I-B)A(I-B)];(ii)设c}K≠2,A,B∈Pn(K),则(1)r(A+B)=r[AB B0]-r(B);(2)r(A+B)=r(B)+r[(I-B)A(I-B)];(iii)设chK=2,A,B∈Pn(K),则 r(A+B)=r(A+AB)+r(B+AB).并得到几个推论.  相似文献   

10.
若矩阵A∈R~(n×n)能表示为A=sI-B,s>0,其中矩阵B和B~T都具有Perron-Frobenius性质,则称矩阵A:(1)是GZ-矩阵(广义Z-矩阵);(2)是GM-矩阵(广义M-矩阵),如果0<ρ(B)≤s.这类矩阵在科学计算方面有着重要的作用,文章构造对称正定矩阵AW+WA~T和W-G~TWG给出了矩阵A为GM-矩阵的一些判定准则。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号