共查询到18条相似文献,搜索用时 144 毫秒
1.
基于混沌弹性粒子群优化与基于分解的二维交叉熵阈值分割 总被引:1,自引:0,他引:1
为了提升二维交叉熵阈值分割法运行速度,提出了基于混沌弹性粒子群优化(CRPSO)和基于分解的2种二维交叉熵阈值分割算法.前者利用CRPSO算法寻找二维交叉熵法的最佳分割阈值,并采用递推方式避免迭代过程中适应度函数的重复计算,使运算速度大大提高;后者将二维交叉熵法的运算转换到2个一维空间上,计算复杂度由O(L2)进一步降为O(L).实验结果表明,2种算法能够在保证分割效果达到或优于现有二维交叉熵阈值分割法的前提下,运行时间大幅减少. 相似文献
2.
基于二维灰度熵及混沌粒子群的图像阈值选取 总被引:1,自引:0,他引:1
为了同时考虑直方图的概率信息和类内灰度级的均匀性,提出了基于灰度级-梯度二维直方图的Shannon灰度熵及Tsallis灰度熵阈值选取方法.给出了Shannon灰度熵和Tsallis灰度熵的定义及其一维阈值选取方法,导出了二维Shannon灰度熵及Tsallis灰度熵阈值选取公式及其快速递推算法,并利用混沌粒子群算法寻求两种阈值选取方法的最佳阈值.实验结果表明,与基于改进的二维最大熵及粒子群递推的阈值选取方法相比,所提出方法的分割图像能更准确地反映原始图像的边缘、纹理及细节信息. 相似文献
3.
4.
细胞神经网络(Cellular Neural Network,CNN)具有能够高速并行计算,易于硬件实现等特点,使其在未来的图像处理方面展现出了广阔的应用前景.CNN较好地探测出图像中边缘的关键在于设计出一组较好的模板参数.提出一种基于混沌粒子群优化算法求解模板参数的方法,一方面,避免了分析细胞神经网络动态性能的一系列复杂过程;另一方面,通过将搜索过程映射为对混沌轨道的遍历过程,可以使得搜索过程避免陷入局部极小,并且在模板参数的范围内能快速找到最优模板值.仿真实验表明,利用该方法设计出来的CNN去探测图像中的边缘比已有结果和利用几种经典边缘提取算子得到的边缘结果更加精确. 相似文献
5.
为提升工程应用中图像分割的质量,在变异量子粒子群算法的基础上进行改进,并结合最大类间方差法提出了一种基于改进量子粒子群优化(QPSO)的多阈值图像分割算法.该算法结合贝叶斯定理与粒子搜索过程中的历史信息构建了一个记忆向量,然后根据记忆向量对每个粒子的行为进行预测,并以此自动设置各粒子的变异概率,使算法在保持一定局部开发能力的同时提升全局搜索能力.在Berkeley数据集上的仿真实验结果表明,与两种基于粒子群的图像分割算法相比,文中算法能获得更为稳定且清晰的图像分割结果. 相似文献
6.
刘洋 《吉林大学学报(理学版)》2018,56(4):959-964
针对当前主动轮廓模型难实现图像高精度分割的问题, 以获得更理想的图像分割结果为目标, 提出一种基于改进粒子群优化算法的图像分割方法. 首先分析传统主动轮廓模型, 指出其存在的局限性; 然后建立能量最小化控制点的泛化函数, 采用粒子群优化算法对泛化函数的最优值进行搜索, 根据所有的能量最小化控制点实现图像分割; 最后采用标准图像库与传统图像分割方法进行对比测试. 测试结果表明, 相对于传统方法, 该方法能更精准、 快速地分割图像, 并有效抑制图像中的噪声干扰, 可获得理想的图像分割效果. 相似文献
7.
改进的混沌粒子群优化算法 总被引:2,自引:0,他引:2
针对传统的简单粒子群算法(SPSO)早熟、易陷入局部最优的缺陷,提出了一种改进的混沌粒子群优化算法(CPSO)。该算法根据混沌算法遍历性的特点,选择合适的混沌映射提取SPSO初始种群,使粒子均匀分布在解空间。当SPSO陷入早熟时,CPSO在最优解周围的区域内进行混沌搜索,取代原来种群中的部分粒子,带领种群跳出局部最优。对7个标准测试函数的寻优测试表明:CPSO算法在寻优精度、速度、稳定性等方面均优于SPSO。 相似文献
8.
9.
基于QPSO的图像分割算法 总被引:1,自引:0,他引:1
汪筱红 《合肥工业大学学报(自然科学版)》2008,31(7)
文章将具有量子行为粒子群优化(QPSO)算法应用到图像分割中,提出了一种新的图像分割算法.新方法基于最佳熵阈值分割技术,用QPSO算法自适应选取分割阈值;仿真实验针对Lena图像分割问题,将标准粒子群优化(PSO)算法与QPSO算法分别独立运行,仿真结果表明,基于QPSO优化的图像分割算法不仅克服了PSO容易过早陷入局部最优值的缺点,而且分割速度更快,是一种更有效的分割方法. 相似文献
10.
针对图像分割特征具有交叉重叠现象、其类属的划分存在不确定性的分割问题,模糊聚类分割算法具有较强的优势,但其速度慢且容易陷入局部最优以及对初始值的设置敏感等问题.根据粒子群优化算法具有全局寻优能力,同时还具有较强的局部寻优能力,能更快收敛于最优解的特点,提出了一种基于粒子群的模糊聚类分割算法.实验证明,该算法相比传统的模糊聚类分割算法,具有更快的收敛速度和更高的分割精度. 相似文献
11.
Particle swarm optimization is a stochastic global optimization algorithm that is based on swarm intelligence. Because of its excellent performance, particle swarm optimization is introduced into fuzzy entropy image segmentation to select the optimal fuzzy parameter combination and fuzzy threshold adaptively. In this study, the particles in the swarm are constructed and the swarm search strategy is proposed to meet the needs of the segmentation application. Then fuzzy entropy image segmentation based on particle swarm optimization is implemented and the proposed method obtains satisfactory results in the segmentation experiments. Compared with the exhaustive search method, particle swarm optimization can give the same optimal fuzzy parameter combination and fuzzy threshold while needing less search time in the segmentation experiments and also has good search stability in the repeated experiments. Therefore, fuzzy entropy image segmentation based on particle swarm optimization is an efficient and promising segmentation method. 相似文献
12.
张伟 《重庆大学学报(自然科学版)》2012,35(2):149-154
基本本质粒子群算法存在易陷入局部最优以及过早收敛的缺点。在基本本质粒子群算法的基础上,借鉴差分进化中利用差分量对种群进行变异操作的思想,提出了差分变异本质粒子群优化算法。结合图像模糊熵,得到了基于差分变异粒子群优化的模糊熵图像分割算法。算法利用差分变异本质粒子群来搜索使图像模糊熵最大的参数值,得到分割闽值对图像进行分割。通过与其它两种本质粒子群算法的分割结果比较表明该算法取得了令人满意的分割结果,算法运算时间很小,能够满足对煤尘浓度实时精确测量的要求。 相似文献
13.
混沌免疫粒子群优化算法在BP网络训练中的应用 总被引:1,自引:0,他引:1
将人工免疫系统中的克隆选择和混沌算法引入粒子群优化算法,提出一种混沌免疫粒子群优化算法.算法的主要特点是利用克隆和混沌变异等操作,提高收敛速度和种群的多样性.结合Iris分类问题,将新算法应用到BP网络的权值优化中,并和基于标准PSO算法的方法和单纯BP网络训练进行比较.实验结果表明,该算法性能优于所比较的两种算法,并且具有良好的收敛性和稳定性. 相似文献
14.
目的利用粒子群优化算法和K-均值方法研究彩色图像的量化问题。方法针对K-均值聚类量化算法对初始值比较敏感,易陷入局部极小值从而使得算法得不到全局最优解,为局部搜索算法,以及粒子群优化算法是一种全局寻优方法的特征,把K-均值聚类方法和粒子群优化算法结合起来,将K-均值聚类方法中的聚类函数作为粒子群优化算法中的粒子适应度函数,对彩色图像进行聚类量化。结果实验表明新算法在峰值信噪比和均方根误差评判准则下可以得到更好的量化结果。结论新方法有效地克服了K-均值聚类方法和粒子群优化算法的不足。 相似文献
15.
基于粒子群优化算法的多模态医学图像刚性配准 总被引:3,自引:0,他引:3
提出了一种基于轮廓特征点及利用PSO(粒子群优化)求解多模态医学图像自动配准新方法.首先采用数学形态学中腐蚀和膨胀算法对图像进行预处理,用区域生长法提取图像的边缘;再用subtractive聚类算法提取出轮廓特征点,将两个特征点集的均方根极小值作为配准准则,然后用PSO算法求解空间变换参数.该算法适用于多模态医学图像配准,与其他算法相比,PSO算法具有操作方便、可靠性好、不易陷入局部极值等优点。 相似文献
16.
针对现有特征选择方法中存在的收敛速度慢和计算效率低等问题,提出了一种基于樽海鞘群与粒子群优化的混合优化(hybrid optimization of salp swarm algorithm and particle swarm optimization,HOSSPSO)特征选择方法,该方法在樽海鞘群算法(salp swarm algorithm,SSA)的基础上,引入粒子群优化(particle swarm optimization,PSO),提高了SSA的收敛速度,改进了探索和开发步骤的效率,增加了解空间更多的灵活性和多样性,使得方法能够迅速获得全局最优值.为了验证算法的性能,在2个实验序列上进行了测试:第一个实验序列使用基准函数,将HOSSPSO与标准SSA、PSO进行了比较;第二个实验序列采用不同的UCI数据集,通过提出的算法确定最佳特征集.实验结果表明,相比于其他优化算法,HOSSPSO的性能更具优势,在多项评估指标中获得较好的效果,能以极少量的特征获得最大的分类精度. 相似文献
17.
彭圣华 《徐州师范大学学报(自然科学版)》2010,28(1):55-58
为改善传统图像融合方法对细节信息的丢失,提出了一种基于遗传粒子群算法(geneticalgorithmofparticleswarmoptimization,GAPSO)的图像融合方法,该算法应用于像素级的图像融合,使图像融合问题归结为最优化问题.该算法结合遗传算法和粒子群算法的优点,对标准粒子群算法进行了改进,将交叉与变异算子引入到标准粒子群算法,提高了该算法的收敛性能和全局求解能力.实验结果表明,该算法获得的评价指标都优于遗传算法和PSO算法,且融合图像较好地从源图像中提取了有用信息,提高了融合质量. 相似文献
18.
为了提高测距误差影响下无线传感器网络节点自定位精度,提出一种基于距离的节点自定位新算法.对混沌搜索与粒子群优化进行算法融合,给出一种改进型粒子群优化算法,将其应用于节点自定位.新算法利用未知节点与信标节点之间的距离信息,通过改进型粒子群优化算法获取未知节点的位置.仿真结果表明,改进型粒子群优化算法对两种标准测试函数的搜索结果优于一般的粒子群优化算法.在测距误差和信标节点数量相同的条件下,相对于最小二乘估计法,新算法在各个测距误差级上的定位精度更高,其定位误差随测距误差增大而上升的趋势更缓慢.新算法具有更好的鲁棒性,适用于测距误差较大、信标节点数量较少的情况. 相似文献