共查询到4条相似文献,搜索用时 0 毫秒
1.
Sarti P Fiori PL Forte E Rappelli P Teixeira M Mastronicola D Sanciu G Giuffré A Brunori M 《Cellular and molecular life sciences : CMLS》2004,61(5):618-623
Besides possessing many physiological roles, nitric oxide (NO) produced by the immune system in infectious diseases has antimicrobial effects. Trichomoniasis, the most widespread non-viral sexually transmitted disease caused by the microaerophilic protist Trichomonas vaginalis, often evolves into a chronic infection, with the parasite able to survive in the microaerobic, NO-enriched vaginal environment. We relate this property to the finding that T. vaginalis degrades NO under anaerobic conditions, as assessed amperometrically. This activity, which is maximal (133 ± 41 nmol NO/108 cells per minute at 20°C) at low NO concentrations ( 1.2 M), was found to be: (i) NADH dependent, (ii) cyanide insensitive and (iii) inhibited by O2. These features are consistent with those of the Escherichia coli A-type flavoprotein (ATF), recently discovered to be endowed with NO reductase activity. Using antibodies against the ATF from E. coli, a protein band was immunodetected in the parasite grown in a standard medium. If confirmed, the expression of an ATF in eukaryotes suggests that the genes coding for ATFs were transferred during evolution from anaerobic Prokarya to pathogenic protists, to increase their fitness for the microaerobic, parasitic life style. Thus the demonstration of an ATF in T. vaginalis would appear relevant to both pathology and evolutionary biology. Interestingly, genomic analysis has recently demonstrated that Giardia intestinalis and other pathogenic protists have genes coding for ATFs.Received 1 November 2003; received after revision 5 January 2004; accepted 13 January 2004 相似文献
2.
Snake venom thrombin-like enzymes: from reptilase to now 总被引:12,自引:0,他引:12
Castro HC Zingali RB Albuquerque MG Pujol-Luz M Rodrigues CR 《Cellular and molecular life sciences : CMLS》2004,61(7-8):843-856
The snake venom thrombin-like enzymes (SVTLEs) comprise a number of serine proteases functionally and structurally related to thrombin. Until recently, only nine complete sequences of this subgroup of the serine protease family were known. Over the past 5 years, the primary structure of several SVTLEs has been characterized, and now this family includes several members. Of particular interest is their possible use in pathologies such as thrombosis. The aim of the present review is to summarize the state of the art concerning the evolutionary, structural and biological features of the SVTLEs.Received 16 August 2003; received after revision 26 September 2003; accepted 1 October 2003 相似文献
3.
The deep-sea clams Calyptogena nautilei and C. tsubasa, which live in the cold-seep area at a depth of 3570 m in the Nankai Trough, Japan, have abundant hemoglobins (Hbs) in erythrocytes, similar to other Calyptogena species. We determined the cDNA-derived amino acid sequences of Hbs from two Calyptogena species. C. tsubasa was found to contain two dimeric Hbs, Hb I consisting of 145 amino acid residues and Hb II with 137 residues, similar to known Hbs from C. soyoae and C. kaikoi. Sequence identity was over 90% among the orthologous chains of Calyptogena Hbs. On the other hand, surprisingly, C. nautilei contained two monomeric Hbs, Hb III containing 141 residues and Hb IV with 134 residues. In addition, Hbs III and IV showed only 33–42% sequence identity with Hbs I and II from other Calyptogena species. The distal (E7) histidine, one of the functionally important residues of the heme protein, is replaced by glutamine in all Hb chains of Calyptogena species. A phylogenetic analysis indicated that C. nautilei Hb III is closer to Hb I from other Calyptogena species. We suppose that a Hb gene was duplicated at least three times in an immediate ancestor of Calyptogena and, presumably depending on physiological conditions different Hb sets are being expressed: dimeric Hbs I and II in C. soyoae, C. kaikoi and C. tsubasa, and monomeric Hbs III and IV in C. nautilei.
Received 13 May 2003; received after revision 5 June 2003; accepted 12 June 2003 相似文献
4.
The selection of novel proteins or enzymes from random protein libraries has come to be a major objective in current biology, and these enzymes should prove useful in various biological and biomedical fields. New technologies such as in vitro selection of proteins in cell-free systems have high potential to realize evolu tionary molecular engineering of proteins. This review highlights an application of insertional mutagenesis of proteins to evolutionary molecular engineering. Random sequence proteins are inserted into the surface of a host enzyme which serves as a scaffold to display random protein libraries. Constraints on random polypeptide conformations owing to the proximity of N- and C-termini on the scaffold would result in greater screening efficiency of libraries. The scaffold enzyme is also used as a probe for monitoring the hill climbing of random sequence proteins on a fitness landscape and navigating rapid protein folding in the sequence space. Received 9 October 1997; received after revision 6 January 1998; accepted 19 January 1998 相似文献