共查询到17条相似文献,搜索用时 109 毫秒
1.
研究了最终密度为 1.85~ 1.86g/cm3的二维 ( 2D)炭 /炭复合材料的不同基体成分———CVD炭和树脂炭的含量对 2DC/C复合材料力学性能的影响 ;并在扫描电镜下进行断口分析 ,探索了C/C复合材料的损伤机理 .此外 ,通过观察炭纤维与CVD炭以及CVD炭与树脂炭的结合状态、纤维拔出、韧断等断口微观形貌 ,从微观上分析了不同基体炭以及它们的微观结合对 2DC/C复合材料强度性能的影响 .结果表明 :CVD炭含量越高 ,剪切强度越低 ;而抗弯强度、弯曲弹性模量和抗压强度则先增加后降低 ,有一个明显的起伏 ,说明CVD炭与树脂炭的含量有一个最佳配比 ,即CVD炭含量约为 4 4 %时 ,可以使 2DC/C复合材料力学性能得到最佳值 ;炭纤维与CVD炭成树脂炭粘结并不是特别牢固 ,其界面具有缓冲裂纹传播速度或改变裂纹传播方向的作用 ,或界面剥离吸收掉集中的应力 ,从而使炭纤维的强度得到很好的利用 ,C/C复合材料的强度得以提高 相似文献
2.
选取由CVD预增密至一定密度,再进行树脂浸渍/炭化补充增密至1.85 g/cm3的炭/炭复合材料作摩擦环试样.测试了该试样在一系列刹车速度时的摩擦磨损性能,并对其摩擦面及磨屑进行了SEM观察,对摩擦面进行显微喇曼光谱分析.研究结果表明炭/炭复合材料的摩擦磨损性能随刹车速度的变化而发生显著变化,在10 m/s时出现最高峰,在25 m/s出现亚高峰;磨损量随刹车速度的增加而增加,而氧化磨损在刹车速度为25 m/s时开始大量产生,在28 m/s时达最大值.其摩擦表面形貌、结构及磨屑亦有较大差别.刹车速度从5 m/s升至20 m/s时,摩擦面石墨化度降低,石墨结构向无定型碳结构转变,但在高速时石墨化度反而升高,无定型碳结构又向石墨结构转变. 相似文献
3.
对同一种炭/炭复合材料,经过不同温度的最终热处理后的微观结构、石墨化度和抗弯强度进行了对比研究.研究结果表明:随着最终热处理温度的升高,在偏振光下,易石墨化的热解炭光学活性增强,而难石墨化的热解炭微观结构几乎没有变化;炭/炭复合材料的晶粒逐渐长大,层面间距逐渐缩小,石墨化度有较大幅度的提高;同时,由于基体炭与炭纤维的热膨胀系数存在差别,随着热处理温度的升高,基体与增强纤维的的结合强度降低,使炭/炭复合材料的抗弯强度降低,但材料的应变性增强,材料的断裂形式由脆断转为假塑性断裂. 相似文献
4.
为了改善航空刹车副用炭/炭复合材料的摩擦磨损性能,对A,B 2种试样进行了渗Si处理.在试样A的摩擦磨损试验中,其线性磨损由原来的42 μm/次降低到17.56 μm/次,摩擦因数较稳定,均为0.36,并且摩擦磨损曲线的线型较好;试样B渗Si后也比渗Si前的摩擦磨损曲线线型好,同时解决了摩擦时的振动问题,但随试样中所生成SiC含量的增加,其摩擦因数由0.40→0.34→0.30降低,静盘线性磨损量由2.0→21.21→69.33 μm增加,对应的动盘线性磨损量也由1.4→23.12→52.85 μm增加.并从摩擦磨损的机理上进行了分析.实验结果表明,摩擦磨损性能一方面受A,B 2种试样的结构性能影响;另一方面是由渗Si后所生成SiC的性能和不同结构决定的. 相似文献
5.
热解炭结构对炭/炭复合材料摩擦磨损性能的影响 总被引:6,自引:1,他引:6
通过控制化学气相沉积工艺条件,得到粗糙层、光滑层、过渡结构、各向同性等几种具有不同微观结构的热解炭.通过金相观察、石墨化度、摩擦磨损性能的测试,得出:热解炭的微观结构对炭/炭复合材料的摩擦磨损性能有较大影响;制动过程中形成的薄膜使摩擦因数降低;粗糙层结构的炭/炭复合材料石墨化程度高,摩擦因数高,线型平稳,且随着压力的增加,其力矩上升明显,是一种优良的摩擦材料;光滑层结构的炭/炭复合材料石墨化度低,摩擦因数低,磨损小. 相似文献
6.
不同制动速度下针刺毡炭/炭复合材料的摩擦磨损行为 总被引:1,自引:1,他引:1
用模拟刹车制动的摩擦试验机,研究了1种针刺毡结构炭/炭复合材料在不同制动速度下的摩擦磨损性能,并在光学显微镜下直接对摩擦表面进行了观察和分析.研究结果表明在制动速度为5m/s或静态条件下,针刺毡炭/炭复合材料的摩擦因数很低,但在制动速度为10m/s、能量较小时摩擦因数出现了峰值;在制动速度升高到20m/s后,摩擦因数较高且随刹车速度变化趋于稳定,显示出优良的高能高温制动性能;只要制动速度不是极高(如28m/s),这种材料均具有很好的抗磨损性能,其中磨损量在制动速度为15m/s时达到最大值,该制动速度对应于飞机进出场滑行制动速度;摩擦表面微观结构及氧化状况取决于制动条件的影响,炭磨屑和基体炭在制动过程中会优先氧化. 相似文献
7.
分别采用石油液化气和丙烯作为碳源、氮气作为载气、针刺毡作为多孔预制体,在微正压ICVI沉积炉中制备炭/炭复合材料,沉积温度为820~970℃,每个样品均沉积120h。研究不同的碳源对材料增密、密度均匀性和显微结构的影响,采用偏光显微镜和扫描电镜观察热解炭的显微结构和沉积表面形貌,采用排水法测量材料的密度。研究结果表明,在不同碳源条件下,材料的密度都随沉积温度的升高先增加后减小,热解炭均为中等织构,但是,其微观组织形貌存有差别;以石油液化气作为碳源,在940℃沉积密度达到1.53g/cm^3,样品内外存在0.022g/cm^3密度梯度,沉积表面形貌粗糙、有球状的凸起;丙烯作为碳源,在880℃沉积密度达到1.51g/cm^3,样品内外存在0.036g/cm^3密度梯度,沉积表面光滑。 相似文献
8.
纤维体积分数对炭/炭复合材料摩擦磨损性能的影响 总被引:2,自引:2,他引:2
通过化学气相沉积法将纤维体积分数分别为23%,30%和40%的3种炭纤雏针刺毡预制件增密至1.50 g·cm-3,再浸渍树脂进一步增密至1.80 g·cm-3,进行热处理后制成炭/炭复合材料,观察3种试样的金相显微结构,测试3种试样在不同刹车压力下的摩擦磨损性能;采用扫描电子显微镜对其磨损表面进行观察.研究结果表明:对于热解炭为非典型粗糙层结构的炭/炭复合材料,纤维体积分数增大,其摩擦曲线相对较平稳,磨损量较大;当纤维体积分数超过30%后,磨损量显著增加;在相同的刹车压力下,纤维体积分数对摩擦因数无显著影响.刹车压力低时试样的摩擦因数比刹车压力高时的摩擦因数大;作为摩擦炭/炭复合材料,纤维体积分数为30%左右较适宜. 相似文献
9.
由湿法叠涂制得的聚丙烯腈(PA N )/酚醛基碳/碳(C/C )复合材料在高性能结构材料领域具有应用潜力.为了了解炭化步骤对聚丙烯腈/酚醛基碳/碳复合材料结构和力学性能的影响 ,进行了层间断裂韧性(模式Ⅱ)测试.由于结构特征与裂纹形成机理的相互关系对C/C-SiC复合材料的制备很重要 ,采用阿基米德方法、扫描电子显微镜(SEM )和三点弯曲试验对复合材料的结构进行表征.实验结果显示 ,碳/碳(C/C)试件的层间断裂韧性为碳纤维增强酚醛塑料(CFRP)试件的59.7%. 相似文献
10.
温压-原位反应法制备C/C-SiC复合材料及其显微结构分析 总被引:1,自引:1,他引:1
采用温压-原位反应法制备炭纤维增强炭和碳化硅双基体(C/C-SiC)复合材料,利用X线衍射分析材料组成,并通过扫描电子和透射电子显微镜从不同尺度观察复合材料的微观结构。研究结果表明:硅炭原位反应生成的SiC是面心立方β-SiC,并以多种形态分布在C/C-SiC复合材料中,主要有小颗粒状、圆弧状、多面体形状和不规则形状等;树脂炭基体和SiC基体之间存在非晶界面相,SiC基体的晶面间距约为0.4 nm,并存在大量孪晶,呈现平行分层生长的形貌。 相似文献
11.
采用两步包埋法在碳/碳复合材料表面制备了SiC/Cr-Al-Si涂层.采用XRD、SEM和EDS分析了涂层的物相组成、微观结构及断面元素分布,测试了双涂层碳/碳复合材料试样在1 500℃静态空气中的抗氧化性能.结果表明:SiC/Cr-Al-Si涂层主要由SiC、AlCr2Si及Al4Si2C三相组成,厚度约为120μm,无穿透性裂纹;与一步包埋法所得SiC涂层相比,SiC/Cr-Al-Si涂层碳/碳复合材料试样的抗氧化性能有所提高,该涂层试样氧化12 h后的失重不超过5%.两步包埋法所得SiC/Cr-Al-Si涂层表面存在微裂纹,并且包埋过程易于使Cr-Al-Si合金成分扩散到SiC涂层内部,从而无法形成内SiC涂层、外Cr-Al-Si涂层的双层涂层结构,降低了Cr-Al-Si合金涂层对C/C复合材料基体的高温氧化保护效果. 相似文献
12.
C/C复合材料的浸涂抗氧化性能 总被引:1,自引:0,他引:1
采用不同浸渍工艺浸涂C/C复合材料 ,研究了不同浸渍剂浸渍后试样的抗氧化效果 ,以及常压浸渍和抽真空 加压浸渍对C/C复合材料抗氧化性能的影响 .研究结果表明 :材料浸渍磷酸盐后其抗氧化性能可得到明显改善 ,用磷酸盐加压浸渍是提高C/C复合材料抗氧化性能的一种有效途径 ;常压浸渍处理时 ,在所使用的 3种浸渍溶液 (A溶液、Z溶液、M溶液 )中 ,经Z溶液处理的试样其抗氧化性最好 ;浸渍了A溶液、Z溶液的试样的氧化失重曲线 ,其最佳抽真空 加压浸渍压力分别为 0 .8,1.2MPa . 相似文献
13.
在M 2000环 块摩擦试验机上测试了C/C复合材料及当前拟用作航空发动机主轴密封环材料的高强石墨的摩擦磨损行为.对材料试样在荷载为60,80,100,120和150N时的摩擦磨损行为进行研究,得出:高强石墨材料试样摩擦因数为0.22~0.24,而C/C复合材料试样摩擦因数仅为0.08~0.12.在80N时,2号试样体积磨损量达10.09×10-4cm3/次,而3号试样体积磨损量仅为1.36×10-4cm3/次;C/C复合材料与高强石墨材料相比摩擦因数低且稳定,磨损量小.这表明C/C复合材料比高强石墨材料更适合用作航空发动机主轴密封环. 相似文献
14.
利用多元耦合场CVI工艺将炭毡增密至1.58 g/cm3,再进行树脂浸渍/炭化增密至1.85 g/cm3制备C/C复合材料。测试由其制成的摩擦实验环的湿式摩擦磨损性能,并利用软件建立的有限元模型对2 500 r/min及1.5 MPa时摩擦实验环的温度场分布进行模拟。结果表明:该湿式摩擦材料的摩擦因数在0.07~0.13间波动,当初始转速恒定时,摩擦因数随刹车压力的增大而减小;当刹车压力恒定时,摩擦因数先增大后减小。建立了C/C复合材料湿式制动过程模型,通过模拟获得了制动盘的各个部位温度场在本模拟研究中呈岛形分布,最高温度出现在0.875 s,这为制动材料的设计提供了参考。 相似文献
15.
在氧化性气氛(21% O2 79% Ar)、不同拉应力下研究SiC涂层C/C复合材料在1 000 ℃和1 300 ℃的氧化失效行为;采用扫描电镜观察SiC涂层C/C复合材料氧化失效后的断口形貌.试验结果表明:当温度为1 000 ℃,拉应力由C/C复合材料拉伸强度的20%增加至50%时,SiC涂层C/C复合材料的应力氧化明显加剧,寿命由大于5.00 h缩短到2.92 h,应力对SiC涂层C/C复合材料的寿命有显著影响;当拉应力为C/C复合材料拉伸强度的50%,温度为1 000 ℃和1 300 ℃时,材料均在低温区断裂,应力氧化寿命分别为2.92 h和2.62 h,温度对应力氧化寿命的影响不明显;应力氧化失效以纤维的氧化失效为主,外加拉应力起促进作用. 相似文献
16.
以炭纤维针刺整体毡为预制体,用化学气相渗透(CVI)、浸渍/炭化(I/C)的方法制备密度和基体炭不同的C/C多孔坯体,采用真空熔渗将铜合金液渗入C/C坯体中制备C/C-Cu复合材料,研究试验条件对复合材料摩擦磨损性能影响。研究结果表明:随着时间的延长,C/C-Cu复合材料摩擦因数趋于稳定;随着载荷的增加,摩擦因数和体积磨损先增后减,当载荷为80 N时达到最大值;试样摩擦因数和体积磨损与对偶件有关,当采用硬度较高的40Cr钢为对偶件时,试样摩擦因数随着时间的延长而增加并趋于稳定,且磨损量最大;当采用硬度低的黄铜和紫铜为对偶件时,试样摩擦因数随着时间变化不大,与紫铜对偶时的磨损量最小;C/C-Cu复合材料的磨损机制主要为磨料磨损、粘着磨损,采用40Cr钢作对偶时氧化磨损加大。 相似文献
17.
基于炭基和硅基防热复合材料的烧蚀机理对C/C-SiC防热复合材料进行烧蚀分析.依据相变原理,在热传导方程和能量平衡原理的基础上,建立了一维非稳态烧蚀数值模型,模拟了C/C-SiC防热复合材料的烧蚀过程,分析结果与实验数据吻合良好.同时通过数值对比看出,在同等的烧蚀环境中,C/C复合材料的烧蚀速率最快,材料内部温度最低;... 相似文献