首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Shinohara  M Watanabe  D H Sachs  N Hozumi 《Nature》1988,336(6198):481-484
Cytolytic T lymphocytes (CTLs) are generally thought to recognize cellular antigens presented by class I MHC molecules. A number of studies, however, have revealed responses of considerable magnitude involving both CD8+ and CD4+ CTLs with class II restriction, suggesting that class II-restricted CTLs recognizing exogeneous protein antigens may exist. As class II antigens are normally expressed on limited types of cells such as B cells and macrophages, such CTLs might be expected to exert a suppressive effect on antibody responses. Here we report that stimulation of mouse lymphocytes with a soluble antigen induced CD8+ and CD4+ CTLs specific for the antigen with class II restriction. The specific lysis was far more efficient when target B cells specifically recognized the antigen than when they did not, indicating that the primary targets for these CTLs are probably B cells expressing immunoglobulin receptors reactive for the same antigen molecule. These results suggest that the natural occurrence of such CTLs during immune responses may explain antigen-specific suppression on antibody responses by T cells.  相似文献   

2.
CD8+ T cells have a crucial role in resistance to pathogens and can kill malignant cells; however, some critical functions of these lymphocytes depend on helper activity provided by a distinct population of CD4+ T cells. Cooperation between these lymphocyte subsets involves recognition of antigens co-presented by the same dendritic cell, but the frequencies of such antigen-bearing cells early in an infection and of the relevant naive T cells are both low. This suggests that an active mechanism facilitates the necessary cell-cell associations. Here we demonstrate that after immunization but before antigen recognition, naive CD8+ T cells in immunogen-draining lymph nodes upregulate the chemokine receptor CCR5, permitting these cells to be attracted to sites of antigen-specific dendritic cell-CD4+ T cell interaction where the cognate chemokines CCL3 and CCL4 (also known as MIP-1alpha and MIP-1beta) are produced. Interference with this actively guided recruitment markedly reduces the ability of CD4+ T cells to promote memory CD8+ T-cell generation, indicating that an orchestrated series of differentiation events drives nonrandom cell-cell interactions within lymph nodes, optimizing CD8+ T-cell immune responses involving the few antigen-specific precursors present in the naive repertoire.  相似文献   

3.
The intestinal immune system is exposed to a mixture of foreign antigens from diet, commensal flora and potential pathogens. Understanding how pathogen-specific immunity is elicited while avoiding inappropriate responses to the background of innocuous antigens is essential for understanding and treating intestinal infections and inflammatory diseases. The ingestion of protein antigen can induce oral tolerance, which is mediated in part by a subset of intestinal dendritic cells (DCs) that promote the development of regulatory T cells. The lamina propria (LP) underlies the expansive single-cell absorptive villous epithelium and contains a large population of DCs (CD11c(+) CD11b(+) MHCII(+) cells) comprised of two predominant subsets: CD103(+) CX(3)CR1(-) DCs, which promote IgA production, imprint gut homing on lymphocytes and induce the development of regulatory T cells, and CD103(-) CX(3)CR1(+) DCs (with features of macrophages), which promote tumour necrosis factor-α (TNF-α) production, colitis, and the development of T(H)17 T cells. However, the mechanisms by which different intestinal LP-DC subsets capture luminal antigens in vivo remains largely unexplored. Using a minimally disruptive in vivo imaging approach we show that in the steady state, small intestine goblet cells (GCs) function as passages delivering low molecular weight soluble antigens from the intestinal lumen to underlying CD103(+) LP-DCs. The preferential delivery of antigens to DCs with tolerogenic properties implies a key role for this GC function in intestinal immune homeostasis.  相似文献   

4.
Apolipoprotein-mediated pathways of lipid antigen presentation   总被引:1,自引:0,他引:1  
Peptide antigens are presented to T cells by major histocompatibility complex (MHC) molecules, with endogenous peptides presented by MHC class I and exogenous peptides presented by MHC class II. In contrast to the MHC system, CD1 molecules bind lipid antigens that are presented at the antigen-presenting cell (APC) surface to lipid antigen-reactive T cells. Because CD1 molecules survey endocytic compartments, it is self-evident that they encounter antigens from extracellular sources. However, the mechanisms of exogenous lipid antigen delivery to CD1-antigen-loading compartments are not known. Serum apolipoproteins are mediators of extracellular lipid transport for metabolic needs. Here we define the pathways mediating markedly efficient exogenous lipid antigen delivery by apolipoproteins to achieve T-cell activation. Apolipoprotein E binds lipid antigens and delivers them by receptor-mediated uptake into endosomal compartments containing CD1 in APCs. Apolipoprotein E mediates the presentation of serum-borne lipid antigens and can be secreted by APCs as a mechanism to survey the local environment to capture antigens or to transfer microbial lipids from infected cells to bystander APCs. Thus, the immune system has co-opted a component of lipid metabolism to develop immunological responses to lipid antigens.  相似文献   

5.
M K Slifka  F Rodriguez  J L Whitton 《Nature》1999,401(6748):76-79
CD8-positive T cells protect the body against viral pathogens by two important mechanisms: production of antiviral cytokines and lysis of infected cells. Cytokine production can have both local and systemic consequences, whereas cytolytic activity is limited to infected cells that are in direct contact with T cells. Here we analyse activated CD8-positive T cells from mice infected with lymphocytic choriomeningitis virus and find that cytokines are not produced ex vivo in the absence of peptide stimulation, but that they are rapidly generated after T cells encounter viral peptides bound to the major histocompatibility complex. Remarkably, cytokine production ceases immediately upon dissociation of the T cells from their targets and resumes when antigenic contact is restored. In contrast to the 'on/off/on' cycling of cytokines, the pore-forming cytotoxic protein perforin is constitutively maintained. Our results indicate that there is differential expression of effector molecules according to whether the antiviral product is secreted (like cytokines) or stored inside the cell (like perforin). The ability to turn cytokines on and off while maintaining intracellular stores of perforin shows the versatility of the cellular immune response and provides a mechanism for maintaining effective immune surveillance while reducing systemic immunopathology.  相似文献   

6.
To trigger class II-restricted T cells, antigen presenting cells have to capture antigens, process them and display their fragments in association with class II molecules. In most species, activated T cells express class II molecules; however, no evidence has been found that these cells can present soluble antigens. This failure may be due to the inefficient capture, processing or display of antigens in a stimulatory form by T-cells. The capture of a soluble antigen, which is achieved by nonspecific mechanisms in macrophages and dendritic cells, can be up to 10(3) times more efficient in the presence of surface receptors, such as surface immunoglobulin on B cells that specifically bind antigen with high affinity. We asked whether T cells would be able to present soluble antigens that bind to their own surface molecules. Here we show that such antigens can be effectively processed and presented by both CD4+- and CD8+-bearing human T cells. This indicates that T cells are fully capable of processing and displaying antigens and are mainly limited in antigen presentation by their inefficiency at antigen capture.  相似文献   

7.
SAP is required for generating long-term humoral immunity   总被引:21,自引:0,他引:21  
Crotty S  Kersh EN  Cannons J  Schwartzberg PL  Ahmed R 《Nature》2003,421(6920):282-287
Long-lived plasma cells and memory B cells are the primary cellular components of long-term humoral immunity and as such are vitally important for the protection afforded by most vaccines. The SAP gene has been identified as the genetic locus responsible for X-linked lymphoproliferative disease, a fatal immunodeficiency. Mutations in SAP have also been identified in some cases of severe common variable immunodeficiency disease. The underlying cellular basis of this genetic disorder remains unclear. We have used a SAP knockout mouse model system to explore the role of SAP in immune responses. Here we report that mice lacking expression of SAP generate strong acute IgG antibody responses after viral infection, but show a near complete absence of virus-specific long-lived plasma cells and memory B cells, despite the presence of virus-specific memory CD4+ T cells. Adoptive transfer experiments show that SAP-deficient B cells are normal and the defect is in CD4+ T cells. Thus, SAP has a crucial role in CD4+ T-cell function: it is essential for late B-cell help and the development of long-term humoral immunity but is not required for early B-cell help and class switching.  相似文献   

8.
Shi Y  Evans JE  Rock KL 《Nature》2003,425(6957):516-521
In infections, microbial components provide signals that alert the immune system to danger and promote the generation of immunity. In the absence of such signals, there is often no immune response or tolerance may develop. This has led to the concept that the immune system responds only to antigens perceived to be associated with a dangerous situation such as infection. Danger signals are thought to act by stimulating dendritic cells to mature so that they can present foreign antigens and stimulate T lymphocytes. Dying mammalian cells have also been found to release danger signals of unknown identity. Here we show that uric acid is a principal endogenous danger signal released from injured cells. Uric acid stimulates dendritic cell maturation and, when co-injected with antigen in vivo, significantly enhances the generation of responses from CD8+ T cells. Eliminating uric acid in vivo inhibits the immune response to antigens associated with injured cells, but not to antigens presented by activated dendritic cells. Our findings provide a molecular link between cell injury and immunity and have important implications for vaccines, autoimmunity and inflammation.  相似文献   

9.
Phagocytosis and clearance of apoptotic cells is mediated by MER   总被引:43,自引:0,他引:43  
Apoptosis is fundamental to the development and maintenance of animal tissues and the immune system. Rapid clearance of apoptotic cells by macrophages is important to inhibit inflammation and autoimmune responses against intracellular antigens. Here we report a new function for Mer, a member of the Axl/Mer/Tyro3 receptor tyrosine kinase family. mer(kd) mice with a cytoplasmic truncation of Mer had macrophages deficient in the clearance of apoptotic thymocytes. This was corrected in chimaeric mice reconstituted with bone marrow from wild-type animals. Primary macrophages isolated from mer(kd) mice showed that the phagocytic deficiency was restricted to apoptotic cells and was independent of Fc receptor-mediated phagocytosis or ingestion of other particles. The inability to clear apoptotic cells adequately may be linked to an increased number of nuclear autoantibodies in mer(kd) mice. Thus, the Mer receptor tyrosine kinase seems to be critical for the engulfment and efficient clearance of apoptotic cells. This has implications for inflammation and autoimmune diseases such as systemic lupus erythematosus.  相似文献   

10.
Macrophages and dendritic cells have key roles in viral infections, providing virus reservoirs that frequently resist antiviral therapies and linking innate virus detection to antiviral adaptive immune responses. Human immunodeficiency virus 1 (HIV-1) fails to transduce dendritic cells and has a reduced ability to transduce macrophages, due to an as yet uncharacterized mechanism that inhibits infection by interfering with efficient synthesis of viral complementary DNA. In contrast, HIV-2 and related simian immunodeficiency viruses (SIVsm/mac) transduce myeloid cells efficiently owing to their virion-associated Vpx accessory proteins, which counteract the restrictive mechanism. Here we show that the inhibition of HIV-1 infection in macrophages involves the cellular SAM domain HD domain-containing protein 1 (SAMHD1). Vpx relieves the inhibition of lentivirus infection in macrophages by loading SAMHD1 onto the CRL4(DCAF1) E3 ubiquitin ligase, leading to highly efficient proteasome-dependent degradation of the protein. Mutations in SAMHD1 cause Aicardi-Goutières syndrome, a disease that produces a phenotype that mimics the effects of a congenital viral infection. Failure to dispose of endogenous nucleic acid debris in Aicardi-Goutières syndrome results in inappropriate triggering of innate immune responses via cytosolic nucleic acids sensors. Thus, our findings show that macrophages are defended from HIV-1 infection by a mechanism that prevents an unwanted interferon response triggered by self nucleic acids, and uncover an intricate relationship between innate immune mechanisms that control response to self and to retroviral pathogens.  相似文献   

11.
CD4+CD25+ regulatory T cells control Leishmania major persistence and immunity   总被引:74,自引:0,他引:74  
Belkaid Y  Piccirillo CA  Mendez S  Shevach EM  Sacks DL 《Nature》2002,420(6915):502-507
The long-term persistence of pathogens in a host that is also able to maintain strong resistance to reinfection, referred to as concomitant immunity, is a hallmark of certain infectious diseases, including tuberculosis and leishmaniasis. The ability of pathogens to establish latency in immune individuals often has severe consequences for disease reactivation. Here we show that the persistence of Leishmania major in the skin after healing in resistant C57BL/6 mice is controlled by an endogenous population of CD4+CD25+ regulatory T cells. These cells constitute 5-10% of peripheral CD4+ T cells in naive mice and humans, and suppress several potentially pathogenic responses in vivo, particularly T-cell responses directed against self-antigens. During infection by L. major, CD4+CD25+ T cells accumulate in the dermis, where they suppress-by both interleukin-10-dependent and interleukin-10-independent mechanisms-the ability of CD4+CD25- effector T cells to eliminate the parasite from the site. The sterilizing immunity achieved in mice with impaired IL-10 activity is followed by the loss of immunity to reinfection, indicating that the equilibrium established between effector and regulatory T cells in sites of chronic infection might reflect both parasite and host survival strategies.  相似文献   

12.
Kemper C  Chan AC  Green JM  Brett KA  Murphy KM  Atkinson JP 《Nature》2003,421(6921):388-392
The immune system must distinguish not only between self and non-self, but also between innocuous and pathological foreign antigens to prevent unnecessary or self-destructive immune responses. Unresponsiveness to harmless antigens is established through central and peripheral processes. Whereas clonal deletion and anergy are mechanisms of peripheral tolerance, active suppression by T-regulatory 1 (Tr1) cells has emerged as an essential factor in the control of autoreactive cells. Tr1 cells are CD4+ T lymphocytes that are defined by their production of interleukin 10 (IL-10) and suppression of T-helper cells; however, the physiological conditions underlying Tr1 differentiation are unknown. Here we show that co-engagement of CD3 and the complement regulator CD46 in the presence of IL-2 induces a Tr1-specific cytokine phenotype in human CD4+ T cells. These CD3/CD46-stimulated IL-10-producing CD4+ cells proliferate strongly, suppress activation of bystander T cells and acquire a memory phenotype. Our findings identify an endogenous receptor-mediated event that drives Tr1 differentiation and suggest that the complement system has a previously unappreciated role in T-cell-mediated immunity and tolerance.  相似文献   

13.
Recognition of bacterial glycosphingolipids by natural killer T cells   总被引:1,自引:0,他引:1  
Kinjo Y  Wu D  Kim G  Xing GW  Poles MA  Ho DD  Tsuji M  Kawahara K  Wong CH  Kronenberg M 《Nature》2005,434(7032):520-525
Natural killer T (NKT) cells constitute a highly conserved T lymphocyte subpopulation that has the potential to regulate many types of immune responses through the rapid secretion of cytokines. NKT cells recognize glycolipids presented by CD1d, a class I-like antigen-presenting molecule. They have an invariant T-cell antigen receptor (TCR) alpha-chain, but whether this invariant TCR recognizes microbial antigens is still controversial. Here we show that most mouse and human NKT cells recognize glycosphingolipids from Sphingomonas, Gram-negative bacteria that do not contain lipopolysaccharide. NKT cells are activated in vivo after exposure to these bacterial antigens or bacteria, and mice that lack NKT cells have a marked defect in the clearance of Sphingomonas from the liver. These data suggest that NKT cells are T lymphocytes that provide an innate-type immune response to certain microorganisms through recognition by their antigen receptor, and that they might be useful in providing protection from bacteria that cannot be detected by pattern recognition receptors such as Toll-like receptor 4.  相似文献   

14.
All humans become infected with multiple herpesviruses during childhood. After clearance of acute infection, herpesviruses enter a dormant state known as latency. Latency persists for the life of the host and is presumed to be parasitic, as it leaves the individual at risk for subsequent viral reactivation and disease. Here we show that herpesvirus latency also confers a surprising benefit to the host. Mice latently infected with either murine gammaherpesvirus 68 or murine cytomegalovirus, which are genetically highly similar to the human pathogens Epstein-Barr virus and human cytomegalovirus, respectively, are resistant to infection with the bacterial pathogens Listeria monocytogenes and Yersinia pestis. Latency-induced protection is not antigen specific but involves prolonged production of the antiviral cytokine interferon-gamma and systemic activation of macrophages. Latency thereby upregulates the basal activation state of innate immunity against subsequent infections. We speculate that herpesvirus latency may also sculpt the immune response to self and environmental antigens through establishment of a polarized cytokine environment. Thus, whereas the immune evasion capabilities and lifelong persistence of herpesviruses are commonly viewed as solely pathogenic, our data suggest that latency is a symbiotic relationship with immune benefits for the host.  相似文献   

15.
Cytotoxic T lymphocytes (CTL) seem to provide the major line of defence against many viruses. CTL effector functions are mediated primarily by cells carrying the CD8 (Ly-2) antigen (CD8+ cells) and are triggered by interactions of the T-cell receptor with an antigenic complex, often termed 'self plus X', composed of viral determinants in association with class I molecules of the major histocompatibility complex (MHC). The mechanism(s) of induction of virus-specific CTL in vivo is poorly understood, but data from in vitro experiments suggest that their generation is strictly dependent on functions provided by CD4+ helper T cells (also referred to as L3T4+; or TH) that respond to antigens in the context of class II (Ia) MHC determinants. The prevailing opinion that induction of most functions of CD8+ cells requires help provided by CD4+ cells has recently been challenged by the observation that CD8+ cells alone can mediate a variety of responses to alloantigens in vitro and in vivo; however, the possibility that CTL to self plus X could be generated in vivo in the absence of TH cells has not been evaluated. We report here that C57BL/6J (B6) and AKR/J mice, when functionally depleted of CD4+ cells by in vivo treatment with the CD4+-specific rat monoclonal antibody GK1.5 (refs 8-14) responded to ectromelia virus infection by developing an optimal in vivo virus-specific CTL response, and subsequently recovered from the disease (mousepox) that was lethal for similarly infected nude mice (CD4-, CD8-).  相似文献   

16.
Infections localized to peripheral tissues such as the skin result in the priming of T-cell responses that act to control pathogens. Activated T cells undergo migrational imprinting within the draining lymph nodes, resulting in memory T cells that provide local and systemic protection. Combinations of migrating and resident memory T cells have been implicated in long-term peripheral immunity, especially at the surfaces that form pathogen entry points into the body. However, T-cell immunity consists of separate CD4(+) helper T cells and CD8(+) killer T cells, with distinct effector and memory programming requirements. Whether these subsets also differ in their ability to form a migrating pool involved in peripheral immunosurveillance or a separate resident population responsible for local infection control has not been explored. Here, using mice, we show key differences in the migration and tissue localization of memory CD4(+) and CD8(+) T cells following infection of the skin by herpes simplex virus. On resolution of infection, the skin contained two distinct virus-specific memory subsets; a slow-moving population of sequestered CD8(+) T cells that were resident in the epidermis and confined largely to the original site of infection, and a dynamic population of CD4(+) T cells that trafficked rapidly through the dermis as part of a wider recirculation pattern. Unique homing-molecule expression by recirculating CD4(+) T effector-memory cells mirrored their preferential skin-migratory capacity. Overall, these results identify a complexity in memory T-cell migration, illuminating previously unappreciated differences between the CD4(+) and CD8(+) subsets.  相似文献   

17.
ICOS co-stimulatory receptor is essential for T-cell activation and function   总被引:61,自引:0,他引:61  
T-lymphocyte activation and immune function are regulated by co-stimulatory molecules. CD28, a receptor for B7 gene products, has a chief role in initiating T-cell immune responses. CTLA4, which binds B7 with a higher affinity, is induced after T-cell activation and is involved in downregulating T-cell responses. The inducible co-stimulatory molecule (ICOS), a third member of the CD28/CTLA4 family, is expressed on activated T cells. Its ligand B7H/B7RP-1 is expressed on B cells and in non-immune tissues after injection of lipopolysaccharide into animals. To understand the role of ICOS in T-cell activation and function, we generated and analysed ICOS-deficient mice. Here we show that T-cell activation and proliferation are defective in the absence of ICOS. In addition, ICOS -/- T cells fail to produce interleukin-4 when differentiated in vitro or when primed in vivo. ICOS is required for humoral immune responses after immunization with several antigens. ICOS-/- mice showed greatly enhanced susceptibility to experimental autoimmune encephalomyelitis, indicating that ICOS has a protective role in inflammatory autoimmune diseases.  相似文献   

18.
Characterization of a common precursor population for dendritic cells   总被引:19,自引:0,他引:19  
del Hoyo GM  Martín P  Vargas HH  Ruiz S  Arias CF  Ardavín C 《Nature》2002,415(6875):1043-1047
Dendritic cells (DCs) are essential for the establishment of immune responses against pathogens and tumour cells, and thus have great potential as tools for vaccination and cancer immunotherapy trials. Experimental evidence has led to a dual DC differentiation model, which involves the existence of both myeloid- and lymphoid-derived DCs. But this concept has been challenged by recent reports demonstrating that both CD8- and CD8+ DCs, considered in mice as archetypes of myeloid and lymphoid DCs respectively, can be generated from either lymphoid or myeloid progenitors. The issue of DC physiological derivation therefore remains an open question. Here we report the characterization of a DC-committed precursor population, which has the capacity to generate all the DC subpopulations present in mouse lymphoid organs---including CD8- and CD8+ DCs, as well as the B220+ DC subset---but which is devoid of myeloid or lymphoid differentiation potential. These data support an alternative model of DC development, in which there is an independent, common DC differentiation pathway.  相似文献   

19.
Li Q  Duan L  Estes JD  Ma ZM  Rourke T  Wang Y  Reilly C  Carlis J  Miller CJ  Haase AT 《Nature》2005,434(7037):1148-1152
In early simian immunodeficiency virus (SIV) and human immunodeficiency virus-1 (HIV-1) infections, gut-associated lymphatic tissue (GALT), the largest component of the lymphoid organ system, is a principal site of both virus production and depletion of primarily lamina propria memory CD4+ T cells; that is, CD4-expressing T cells that previously encountered antigens and microbes and homed to the lamina propria of GALT. Here, we show that peak virus production in gut tissues of SIV-infected rhesus macaques coincides with peak numbers of infected memory CD4+ T cells. Surprisingly, most of the initially infected memory cells were not, as expected, activated but were instead immunophenotypically 'resting' cells that, unlike truly resting cells, but like the first cells mainly infected at other mucosal sites and peripheral lymph nodes, are capable of supporting virus production. In addition to inducing immune activation and thereby providing activated CD4+ T-cell targets to sustain infection, virus production also triggered an immunopathologically limiting Fas-Fas-ligand-mediated apoptotic pathway in lamina propria CD4+ T cells, resulting in their preferential ablation. Thus, SIV exploits a large, resident population of resting memory CD4+ T cells in GALT to produce peak levels of virus that directly (through lytic infection) and indirectly (through apoptosis of infected and uninfected cells) deplete CD4+ T cells in the effector arm of GALT. The scale of this CD4+ T-cell depletion has adverse effects on the immune system of the host, underscoring the importance of developing countermeasures to SIV that are effective before infection of GALT.  相似文献   

20.
T Inada  C A Mims 《Nature》1984,309(5963):59-61
Infection of mice with lactate dehydrogenase virus (LDV) leads to elevation of plasma lactate dehydrogenase, lifelong viraemia and perturbations of cell-mediated and humoral immune responses. The virus replicates exclusively in a restricted set of macrophages, but the basis for restricted cell susceptibility is unknown. By immunofluorescence techniques we have found that the per cent infected was the same as the per cent expressing antigens encoded by the I region of the major histocompatibility complex (Ia). Infection of CBA strain I-A+ peritoneal macrophages was blocked when cells were treated simultaneously with monoclonal antibody to I-A and I-E, but not with either antibody separately. LDV infectivity was inactivated when virus was treated with purified rat glycoprotein homologous to mouse I-A and I-E antigens. These results indicate that the receptors for LDV are I-A and I-E antigens. Selective infection of Ia-positive macrophages may have an important effect on the immunological capability of infected mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号