共查询到13条相似文献,搜索用时 164 毫秒
1.
针对液化天然气水面泄漏蒸发产生的低温天然气扩散问题,基于Monin-Obukhov相似理论,使用FLUENT软件,模拟Coyote系列实验3、5.计算结果与实验结果、SLAB和DE-GADIS模型模拟结果比较表明,使用FLUENT软件模拟结果更接近实验数值.同时,通过设定FLUENT软件中壁面的热传导速率和液化天然气的蒸发速率,模拟液化天然气在水面和地面泄漏和扩散过程,结果表明,液化天然气水面泄漏扩散时水面最大体积分数高于地面泄漏扩散情况. 相似文献
2.
液化天然气泄漏扩散数值模型分析 总被引:1,自引:0,他引:1
简述了常用的LNG泄漏扩散模型,分析了这些模型的优缺点及适用性,重点介绍了液化天然气泄漏扩散CFD模型公式,分析了应用大型LNG泄漏现场试验对LNG泄漏扩散CFD模型的验证数据.分析结果表明:同其他的模型相比,液化天然气泄漏扩散CFD数值模型具有更好的预测精度. 相似文献
3.
多源重气泄漏扩散模拟研究 总被引:1,自引:0,他引:1
由于重气效应的存在,重气的泄漏和扩散的危险性较之轻气更为严重.在单源SLAB模型的基础上发展了多源重气扩散模型,并对单源和多源重气在连续泄漏和瞬时泄漏两种泄漏模式下的扩散都进行了模拟研究.以氯气泄漏为研究算例,计算得到了相应条件下下风向的时均浓度分布情况,结合毒性标准给出了不同毒性水平下的事故后果影响范围,从而可以为应急救援和疏散决策制定提供理论指导. 相似文献
4.
简述重气云团及其扩散的相关理论,运用SLAB模型模拟某厂液氯钢瓶破裂瞬时泄漏后下风向浓度三维分布情况。得到近地处氯气泄漏扩散浓度分布曲线、敏感点浓度随时间变化曲线、浓度分布三维曲面。结果表明:厂内大部分浓度在300 mg/m3以上,位于致死区域;下风向1 500 m处敏感点暴露在50 ~ 60 mg/m3浓度区间内的时间约为60 s;三维浓度曲面呈狭长的椭圆拱形,氯气浓度58 mg/m3的曲面高度可达43 m。以上结果可为事故应急救援提供有效参考。 相似文献
5.
室内燃气泄漏的模拟与分析 总被引:1,自引:0,他引:1
于室内燃气泄漏引发的爆炸和火灾事故给居民的生命财产造成了极大的损失,通过浮射流理论和紊流扩散理论对燃气泄漏后扩散情况进行了分析简化,建立了流体力学模型并定义了其边界条件.运用CFD软件对该模型进行了数值模拟,得到了泄漏发生后不同条件下的室内燃气浓度的变化规律,对燃气管道优化和减少火灾具有指导意义. 相似文献
6.
基于商业CFD软件FLUENT,选用组分运输模型和k-ε湍流模型,运用PISO求解方法,对以甲烷为主要成分的天然气在空气中的泄漏扩散过程进行数值模拟.得到了不同管内压力和不同泄漏口口径下天然气泄漏量的数值模拟结果,与基于小孔泄漏理论模型计算结果基本吻合.结果表明:管内压力和泄漏量呈线性规律,泄漏口口径和泄漏量呈二次规律;泄漏产生的射流抬高高度随着管内压力的变化明显而随泄漏口口径变化不明显. 相似文献
7.
为了解隧道内液化天然气(LNG)管道泄漏爆炸事故的发展规律,以某实际工程为例,运用计算流体动力学方法建立隧道内LNG管道泄漏爆炸模型,分别以3种不同的边界条件对LNG泄漏爆炸过程进行了数值模拟计算。针对隧道两端为固壁和设泄压结构2种情况下的爆炸过程,通过数值模拟得到了3种不同泄漏强度条件下隧道内LNG泄漏爆炸峰值超压情况,并以此为依据判定其破坏性。结果表明,隧道两端为固壁或设泄压结构时,在泄漏强度最小及最大2种情况下爆炸形式均为爆燃,会对隧道内设施产生较严重破坏;泄漏强度居中的情况下,则会发生爆燃转爆轰过程,破坏力极强,应避免此种情况的发生。 相似文献
8.
以普通的居民住宅为研究对象,考虑室内燃气泄漏的特点,利用计算流体动力学,通过Fluent模拟软件对室内燃气泄漏后的扩散情况进行二维模拟。分析室内燃气泄漏扩散情况。结果表明:(1)点火源1在295 s左右时达到爆炸极限;(2)厨房门开启时,点火源2在14 316 s时达到爆炸极限;关闭时,点火源2达到爆炸极限的时间很长。 相似文献
9.
运用计算流体力学方法对重气瞬时扩散现象进行数值模拟,并与重气扩散理论及野外现场实验观测结果进行定性和定量对比分析. 结果表明,数值模拟方法可以再现重气瞬时扩散的物理过程并以较高的可靠性预测浓度场的时空分布特征. 将数值模拟结果应用于实际的风险分析和安全评价中,可以定量地预测特定地点危险浓度的到达时间、持续时间以及特定时间危险浓度的空间分布;得出了在重气毒性阈值较低的情况下,近源区和远源区中毒风险一样高等结论. 相似文献
10.
针对天然气管道站场中天然气的泄漏扩散对安全生产造成的问题,开展了天然气管道站场中天然气泄漏扩散规律研究。采用专业软件模拟的方法,使用FLACS进行模拟,设置边界条件进行求解,研究不同风速、不同风向及不同泄漏速率对天然气泄漏扩散的影响,并结合天然气行业相关标准对天然气管道站场内可燃性气体位置进行优化。研究结果表明,泄漏速率越大、风速越小时,站场区域内可燃气体体积越大,可燃气体扩散范围越广,危险程度越高,同时,顺风向泄漏的危害程度要小于其他方向。基于计算结果建议收发球筒区的可燃气体探测器应设置在距离收球筒1 m处,高度设置为2m。这一研究为天然气管道站场的安全运行提供了重要理论支撑。 相似文献
11.
为了准确计算船舶溢油事故发生时,油舱油液泄漏入水行为过程,比较了3种不同的油舱油液泄漏入水行为模拟方法,即极简化模型模拟方法、小孔射流模型模拟方法和计算流体动力学模型模拟方法。结合事故性船舶溢油实际情景,分析这些模拟方法的适用范围和局限性,并进行实验验证。实验结果表明:耦合复杂船体结构建模的计算流体动力学模型计算方法能更准确地模拟油舱泄漏入水行为。 相似文献
12.
通过建立二维数值模型,利用计算流体力学软件进行数值模拟,研究了送粉气流压力和温度对冷喷涂过程中流场及粒子速度的影响.结果表明:喷涂中不可忽略送粉气流对流场及粒子速度的影响;为将粉末注入喷管,送粉气流的出口压力不能小于出口处的主气流压力,但增大送粉气流压力会使得进入喷管渐缩段的送粉冷气体流量增大,从而排挤高温主气流,同时也降低喷管气体流动的滞止焓,导致喷管喉部声速减小,不利于粒子加速;增加主气流温度对粒子加速效果不明显,而增加送粉气流温度可有效提高粒子撞击基板的速度,进而提高粉末粒子的沉积效率. 相似文献
13.
目的研究天然气成藏机理与分布规律。方法国内外相关文献综合分析。结果对天然气成藏动力学机制的研究主要围绕背斜圈闭气藏(含上倾型构造及地层圈闭)、向斜圈闭气藏(深盆气圈闭)及煤层气藏(源内气藏)3类气藏进行,但是,研究的侧重点差别很大。其中,对背斜气藏的研究主要侧重天然气初次运移、二次运移、聚集及保存机制的研究,对向斜圈闭气藏的研究主要侧重于气水倒置形成、气藏异常压力形成机制的研究,而对煤层气藏的研究则主要侧重煤孔隙的形成、煤层气富集及保存机制研究。存在问题:其一,把背斜气藏和向斜气藏当成两种成藏动力学机制完全不同的气藏类型,其动力学依据不充分;其二,没有解决气源岩内天然气初次运移机制和聚集机制的矛盾。结论建议应加强两方面的研究:其一,以盆地升降运动为动力学基础,研究天然气成藏的动力学机制;其二,以烃源岩—断裂—储气层为基本输导格架,研究不同输导介质中天然气成藏的动力学机制。上述研究有望解决不同类型天然气藏形成动力学存在的问题。 相似文献